2.2.70 Problems 6901 to 7000

Table 2.141: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6901

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.300

6902

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.710

6903

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.526

6904

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.347

6905

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.360

6906

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (-2+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.696

6907

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.277

6908

\[ {}x^{3} \left (x^{2}-25\right ) \left (-2+x \right )^{2} y^{\prime \prime }+3 x \left (-2+x \right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.155

6909

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.112

6910

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.693

6911

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.231

6912

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.876

6913

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

0.760

6914

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.827

6915

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.743

6916

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

[[_Emden, _Fowler]]

0.821

6917

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.861

6918

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.813

6919

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.949

6920

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.847

6921

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.816

6922

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.960

6923

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.887

6924

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.763

6925

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.841

6926

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.181

6927

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.132

6928

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.738

6929

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.727

6930

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.103

6931

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.853

6932

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

[[_Emden, _Fowler]]

0.135

6933

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.113

6934

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.171

6935

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.789

6936

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.183

6937

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.888

6938

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.820

6939

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

0.618

6940

\[ {}y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

[_Bessel]

1.171

6941

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.187

6942

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.827

6943

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.859

6944

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.797

6945

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

1.196

6946

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

1.131

6947

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

[_Lienard]

1.152

6948

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

1.196

6949

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.808

6950

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.745

6951

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.736

6952

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.700

6953

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.460

6954

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.658

6955

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.306

6956

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.835

6957

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.813

6958

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{4}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.875

6959

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.812

6960

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.497

6961

\[ {}\left (x -1\right ) y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.610

6962

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.501

6963

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.881

6964

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.815

6965

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.504

6966

\[ {}\left (x +2\right ) y^{\prime \prime }+3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.596

6967

\[ {}\left (x +1\right ) y^{\prime } = y \]

[_separable]

0.459

6968

\[ {}y^{\prime } = -2 x y \]

[_separable]

0.563

6969

\[ {}x y^{\prime }-3 y = k \]

[_separable]

0.437

6970

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.294

6971

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.530

6972

\[ {}y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.553

6973

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[_Gegenbauer]

0.579

6974

\[ {}y^{\prime \prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.506

6975

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.536

6976

\[ {}y^{\prime }+4 y = 1 \]
i.c.

[_quadrature]

0.538

6977

\[ {}y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.556

6978

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+30 y = 0 \]
i.c.

[_Gegenbauer]

0.613

6979

\[ {}\left (-2+x \right ) y^{\prime } = x y \]
i.c.

[_separable]

0.552

6980

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.632

6981

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.747

6982

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.117

6983

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.805

6984

\[ {}x y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.339

6985

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.554

6986

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

0.673

6987

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

0.856

6988

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.770

6989

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.904

6990

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.828

6991

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.792

6992

\[ {}2 x \left (1-x \right ) y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.927

6993

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

0.911

6994

\[ {}4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

0.840

6995

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.708

6996

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.693

6997

\[ {}3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.286

6998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{49}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.816

6999

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

0.744

7000

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.960