2.2.70 Problems 6901 to 7000

Table 2.141: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6901

\[ {}2 y^{\prime } x -y = 2 x \cos \left (x \right ) \]

[_linear]

1.596

6902

\[ {}x y+x^{2} y^{\prime } = 10 \sin \left (x \right ) \]

[_linear]

1.413

6903

\[ {}y^{\prime }+2 x y = 1 \]

[_linear]

0.946

6904

\[ {}y^{\prime } x -2 y = 0 \]

[_separable]

1.526

6905

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

3.139

6906

\[ {}2 y+y^{\prime } = 0 \]

[_quadrature]

0.825

6907

\[ {}5 y^{\prime } = 2 y \]

[_quadrature]

0.753

6908

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.341

6909

\[ {}2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

0.337

6910

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.891

6911

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.417

6912

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

0.930

6913

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.231

6914

\[ {}3 y^{\prime } x +5 y = 10 \]

[_separable]

1.768

6915

\[ {}y^{\prime } = y^{2}+2 y-3 \]

[_quadrature]

0.846

6916

\[ {}\left (-1+y\right ) y^{\prime } = 1 \]

[_quadrature]

0.941

6917

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = 10 \]

[[_2nd_order, _missing_x]]

0.622

6918

\[ {}{y^{\prime }}^{2} = 4 y \]

[_quadrature]

0.447

6919

\[ {}{y^{\prime }}^{2} = 9-y^{2} \]

[_quadrature]

0.922

6920

\[ {}y y^{\prime }+\sqrt {16-y^{2}} = 0 \]

[_quadrature]

2.614

6921

\[ {}{y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.529

6922

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=5 x+3 y \end {array}\right ] \]

system_of_ODEs

0.424

6923

\[ {}\left [\begin {array}{c} x^{\prime \prime }=4 y+{\mathrm e}^{t} \\ y^{\prime \prime }=4 x-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.051

6924

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

44.960

6925

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.720

6926

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

0.268

6927

\[ {}y^{\prime \prime } = f \left (x \right ) \]

[[_2nd_order, _quadrature]]

0.607

6928

\[ {}x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0 \]

[_quadrature]

0.358

6929

\[ {}y^{\prime } = 5-y \]

[_quadrature]

0.610

6930

\[ {}y^{\prime } = 4+y^{2} \]

[_quadrature]

8.174

6931

\[ {}y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y = 0 \]

[[_high_order, _missing_x]]

0.099

6932

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 y^{\prime } x -78 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.146

6933

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

1.332

6934

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

1.321

6935

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

1.949

6936

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

1.969

6937

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

2.036

6938

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

1.984

6939

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

24.052

6940

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.262

6941

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.823

6942

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.921

6943

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.770

6944

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.576

6945

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.431

6946

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.430

6947

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

1.544

6948

\[ {}y^{\prime } x = 2 y \]
i.c.

[_separable]

1.804

6949

\[ {}y^{\prime } = y^{{2}/{3}} \]

[_quadrature]

1.062

6950

\[ {}y^{\prime } = \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

9.018

6951

\[ {}y^{\prime } x = y \]

[_separable]

1.271

6952

\[ {}y^{\prime }-y = x \]

[[_linear, ‘class A‘]]

0.929

6953

\[ {}\left (4-y^{2}\right ) y^{\prime } = x^{2} \]

[_separable]

1.252

6954

\[ {}\left (y^{3}+1\right ) y^{\prime } = x^{2} \]

[_separable]

1.255

6955

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.188

6956

\[ {}\left (y-x \right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.923

6957

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

24.040

6958

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

3.329

6959

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

3.545

6960

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

9.648

6961

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

1.501

6962

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1.631

6963

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.345

6964

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.589

6965

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.266

6966

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.384

6967

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.321

6968

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

3.363

6969

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

3.156

6970

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6.608

6971

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.948

6972

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.259

6973

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.272

6974

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.606

6975

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.220

6976

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.959

6977

\[ {}y^{\prime } = x -2 y \]
i.c.

[[_linear, ‘class A‘]]

1.207

6978

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

1.985

6979

\[ {}2 y^{\prime \prime }-3 y^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.341

6980

\[ {}2 y+y^{\prime } = 3 x -6 \]

[[_linear, ‘class A‘]]

0.978

6981

\[ {}y^{\prime } = x \sqrt {y} \]
i.c.

[_separable]

5.470

6982

\[ {}y^{\prime } x = 2 x \]

[_quadrature]

0.576

6983

\[ {}y^{\prime } = 2 \]

[_quadrature]

0.620

6984

\[ {}y^{\prime } = 2 y-4 \]

[_quadrature]

0.660

6985

\[ {}y^{\prime } x = y \]

[_separable]

1.283

6986

\[ {}y^{\prime \prime }+9 y = 18 \]

[[_2nd_order, _missing_x]]

1.600

6987

\[ {}x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.953

6988

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

0.749

6989

\[ {}y^{\prime } = y \left (y-3\right ) \]

[_quadrature]

1.049

6990

\[ {}3 y^{\prime } x -2 y = 0 \]

[_separable]

1.575

6991

\[ {}\left (-2+2 y\right ) y^{\prime } = 2 x -1 \]
i.c.

[_separable]

3.188

6992

\[ {}y^{\prime } x +y = 2 x \]
i.c.

[_linear]

2.263

6993

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

1.900

6994

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

0.358

6995

\[ {}y^{\prime } = 6 \sqrt {y}+5 x^{3} \]
i.c.

[_Chini]

1.349

6996

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.937

6997

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.732

6998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.903

6999

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \sec \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.544

7000

\[ {}y^{\prime }+y \sin \left (x \right ) = x \]

[_linear]

1.713