2.2.69 Problems 6801 to 6900

Table 2.139: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6801

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

0.739

6802

\[ {}y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.508

6803

\[ {}2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.874

6804

\[ {}4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.828

6805

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.850

6806

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

0.658

6807

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.757

6808

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.184

6809

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.738

6810

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.919

6811

\[ {}2 x y^{\prime \prime }+y^{\prime }-y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

1.008

6812

\[ {}2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.867

6813

\[ {}x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.845

6814

\[ {}z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.574

6815

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.967

6816

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+x y^{\prime }\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.918

6817

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.006

6818

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.006

6819

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-\left (4-x \right ) x y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.041

6820

\[ {}\left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.439

6821

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.722

6822

\[ {}x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.999

6823

\[ {}x y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.767

6824

\[ {}\left (x -1\right ) \left (-2+x \right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.648

6825

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.503

6826

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.502

6827

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]
i.c.

[_Gegenbauer]

0.608

6828

\[ {}y^{\prime \prime } = \left (x -1\right ) y \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.503

6829

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.811

6830

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.140

6831

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.623

6832

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.242

6833

\[ {}2 x y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.722

6834

\[ {}\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.045

6835

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.458

6836

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.910

6837

\[ {}x y^{\prime \prime }+\left (\frac {1}{2}-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.834

6838

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.799

6839

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.740

6840

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.678

6841

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.486

6842

\[ {}y^{\prime }+x y = \cos \left (x \right ) \]

[_linear]

0.610

6843

\[ {}y^{\prime }+x y = \frac {1}{x^{3}} \]

[_linear]

1.216

6844

\[ {}x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.098

6845

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.282

6846

\[ {}y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

0.401

6847

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.343

6848

\[ {}y^{\prime \prime }+4 x y = 0 \]

[[_Emden, _Fowler]]

0.464

6849

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

0.576

6850

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.461

6851

\[ {}y^{\prime }-x y = 0 \]

[_separable]

0.500

6852

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.674

6853

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.465

6854

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.586

6855

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.573

6856

\[ {}y^{\prime \prime }+2 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.473

6857

\[ {}y^{\prime \prime }-x y = \frac {1}{1-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.552

6858

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.740

6859

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

6860

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.786

6861

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-x y = 0 \]

[[_Emden, _Fowler]]

0.669

6862

\[ {}2 x y^{\prime \prime }+y^{\prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.764

6863

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.756

6864

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.245

6865

\[ {}x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.162

6866

\[ {}x y^{\prime \prime }+x^{3} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.234

6867

\[ {}x y^{\prime \prime }+x y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.364

6868

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.472

6869

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.312

6870

\[ {}x^{3} y^{\prime \prime }+y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.116

6871

\[ {}x y^{\prime \prime }+x^{5} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.187

6872

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.421

6873

\[ {}\cos \left (x \right ) y^{\prime \prime }-\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.967

6874

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.720

6875

\[ {}x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.250

6876

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.642

6877

\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.608

6878

\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.726

6879

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.691

6880

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.705

6881

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

0.451

6882

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.461

6883

\[ {}y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

[_Lienard]

0.512

6884

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

[_Hermite]

0.485

6885

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.567

6886

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.567

6887

\[ {}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.518

6888

\[ {}\left (x +2\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.516

6889

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.557

6890

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

0.567

6891

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.608

6892

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.578

6893

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.503

6894

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

6895

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.510

6896

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.574

6897

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.690

6898

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.744

6899

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.503

6900

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.121