2.2.61 Problems 6001 to 6100

Table 2.123: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6001

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

70.770

6002

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.089

6003

\[ {}y^{\prime \prime } = 2 k y^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.908

6004

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.594

6005

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.288

6006

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.620

6007

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.349

6008

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.734

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

[[_2nd_order, _missing_y]]

1.428

6010

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.637

6011

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.853

6012

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.004

6013

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

18.148

6014

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

1.298

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.486

6016

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.206

6017

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.763

6018

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.144

6019

\[ {}-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Abel]

8.006

6020

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

2.117

6021

\[ {}y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1} = 0 \]

[_Abel]

3.974

6022

\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \]

[_Abel]

30.313

6023

\[ {}x^{2} y^{\prime }+x y^{3}+y^{2} a = 0 \]

[_rational, _Abel]

0.882

6024

\[ {}\left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0 \]

[_rational, _Abel]

1.863

6025

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

1.352

6026

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.228

6027

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.924

6028

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

0.296

6029

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

0.686

6030

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

5.758

6031

\[ {}\left (x +1\right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

[_separable]

1.303

6032

\[ {}y^{\prime } = a y^{2} x \]

[_separable]

1.275

6033

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1.576

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2.901

6035

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{x +1} \]

[_separable]

1.452

6036

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

1.534

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1.775

6038

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

2.620

6039

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

1.422

6040

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.935

6041

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.463

6042

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.931

6043

\[ {}x y^{\prime \prime }+2 y^{\prime }+a^{3} x^{2} y = 2 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.885

6044

\[ {}y^{\prime \prime }+a \,x^{2} y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

6045

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.175

6046

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.935

6047

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.897

6048

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.026

6049

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.944

6050

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.936

6051

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (1-n \right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (1-n \right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.138

6052

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.076

6053

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+x y^{\prime }-n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.675

6054

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.659

6055

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.720

6056

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.685

6057

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.157

6058

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.116

6059

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.283

6060

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.225

6061

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-x y = 0 \]

[[_elliptic, _class_I]]

0.775

6062

\[ {}y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

[[_Emden, _Fowler]]

0.171

6063

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.273

6064

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+x y = 0 \]

[[_elliptic, _class_II]]

0.740

6065

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

[_Jacobi]

1.337

6066

\[ {}x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.170

6067

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.143

6068

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.029

6069

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

0.953

6070

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.297

6071

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

0.872

6072

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (-2 x +1\right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

0.908

6073

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.847

6074

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.638

6075

\[ {}y^{2}+y^{\prime } = \frac {a^{2}}{x^{4}} \]

[_rational, _Riccati]

1.431

6076

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

[[_Emden, _Fowler]]

0.821

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.247

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.427

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.442

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.102

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.774

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.179

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.966

6084

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.439

6085

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.083

6086

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.125

6087

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.126

6088

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

0.656

6089

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

0.729

6090

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.701

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

2.226

6092

\[ {}y^{\prime } = y \]

[_quadrature]

0.957

6093

\[ {}x y^{\prime } = y \]
i.c.

[_separable]

1.503

6094

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

3.141

6095

\[ {}y^{\prime } \sin \left (x \right ) = y \ln \left (y\right ) \]
i.c.

[_separable]

8.257

6096

\[ {}1+y^{2}+x y y^{\prime } = 0 \]
i.c.

[_separable]

2.773

6097

\[ {}x y y^{\prime }-x y = y \]
i.c.

[_quadrature]

0.546

6098

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

2.276

6099

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

2.902

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

1.976