# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 x y+x^{2}+3 = 0
\] |
[_exact, _rational] |
✓ |
1.232 |
|
\[
{}\cos \left (x \right ) y^{\prime }+y+\left (\sin \left (x \right )+1\right ) \cos \left (x \right ) = 0
\] |
[_linear] |
✓ |
2.710 |
|
\[
{}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
2.783 |
|
\[
{}\left (x^{2}-y\right ) y^{\prime }+x = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
0.901 |
|
\[
{}\left (x^{2}-y\right ) y^{\prime }-4 x y = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.028 |
|
\[
{}x y y^{\prime }+x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
4.637 |
|
\[
{}2 x y y^{\prime }+3 x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
60.458 |
|
\[
{}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
6.369 |
|
\[
{}\left (x y-1\right )^{2} x y^{\prime }+\left (1+y^{2} x^{2}\right ) y = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
1.837 |
|
\[
{}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
4.291 |
|
\[
{}3 x y^{2} y^{\prime }+y^{3}-2 x = 0
\] |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
2.283 |
|
\[
{}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
15.842 |
|
\[
{}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0
\] |
[_rational] |
✓ |
1.539 |
|
\[
{}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0
\] |
[_separable] |
✓ |
2.172 |
|
\[
{}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0
\] |
[_separable] |
✓ |
1.472 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.392 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.832 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.941 |
|
\[
{}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.845 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.992 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.071 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime \prime }-a^{2} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.096 |
|
\[
{}y^{\prime \prime }-2 k y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.028 |
|
\[
{}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.851 |
|
\[
{}y^{\prime \prime \prime \prime } = 0
\] |
[[_high_order, _quadrature]] |
✓ |
0.039 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.842 |
|
\[
{}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.068 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.066 |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.662 |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.068 |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.069 |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.079 |
|
\[
{}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.074 |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.135 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.760 |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.153 |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.087 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.837 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.089 |
|
\[
{}y^{\prime \prime \prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.076 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.069 |
|
\[
{}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.089 |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
5.684 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.164 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.560 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.631 |
|
\[
{}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.142 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.946 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.992 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.119 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.345 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.345 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.602 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
27.852 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.201 |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
2.352 |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}+2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.496 |
|
\[
{}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
2.293 |
|
\[
{}y^{\prime \prime }+y = 4 x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.274 |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.792 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.038 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.194 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.091 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.722 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.003 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.845 |
|
\[
{}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.593 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.614 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.580 |
|
\[
{}y^{\prime \prime }+9 y = 8 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.237 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.435 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.264 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.706 |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.064 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.908 |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.701 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.854 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.982 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.038 |
|
\[
{}y^{\prime \prime }+y = 4 x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.273 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.182 |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.707 |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.408 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.095 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.207 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.148 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.487 |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.809 |
|
\[
{}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.265 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.431 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.353 |
|
\[
{}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.856 |
|
\[
{}y^{\prime \prime } = 2 y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.591 |
|
\[
{}y^{3} y^{\prime \prime } = k
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.109 |
|
\[
{}y y^{\prime \prime } = -1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
2.140 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.935 |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.132 |
|
\[
{}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.450 |
|