2.2.49 Problems 4801 to 4900

Table 2.99: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4801

\[ {}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.632

4802

\[ {}y^{\prime } x = \left (-2 x^{2}+1\right ) \cot \left (y\right )^{2} \]

[_separable]

2.537

4803

\[ {}y^{\prime } x = y-\cot \left (y\right )^{2} \]

[_separable]

3.145

4804

\[ {}y^{\prime } x +y+2 x \sec \left (x y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.443

4805

\[ {}y^{\prime } x -y+x \sec \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.283

4806

\[ {}y^{\prime } x = y+x \sec \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.363

4807

\[ {}y^{\prime } x = \sin \left (x -y\right ) \]

[‘y=_G(x,y’)‘]

3.425

4808

\[ {}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.901

4809

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

1.943

4810

\[ {}y^{\prime } x +x +\tan \left (x +y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.401

4811

\[ {}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.481

4812

\[ {}y^{\prime } x = \left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

2.489

4813

\[ {}y^{\prime } x = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.913

4814

\[ {}y^{\prime } x = x +y+{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.793

4815

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

1.685

4816

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.618

4817

\[ {}y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

2.184

4818

\[ {}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

133.764

4819

\[ {}y^{\prime } x +n y = f \left (x \right ) g \left (x^{n} y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.323

4820

\[ {}y^{\prime } x = y f \left (x^{m} y^{n}\right ) \]

[[_homogeneous, ‘class G‘]]

1.619

4821

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (3 x +4\right )+y \]

[_linear]

0.998

4822

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

1.354

4823

\[ {}\left (x +1\right ) y^{\prime } = {\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \]

[_linear]

1.842

4824

\[ {}\left (x +1\right ) y^{\prime } = a y+b x y^{2} \]

[_rational, _Bernoulli]

3.670

4825

\[ {}\left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

3.240

4826

\[ {}\left (x +1\right ) y^{\prime } = \left (1-x y^{3}\right ) y \]

[_rational, _Bernoulli]

2.009

4827

\[ {}\left (x +1\right ) y^{\prime } = 1+y+\left (x +1\right ) \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

2.301

4828

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

0.361

4829

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

1.123

4830

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

1.015

4831

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

1.531

4832

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

1.497

4833

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

2.234

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

1.547

4835

\[ {}\left (a -x \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

[_rational, _Bernoulli]

2.787

4836

\[ {}2 y^{\prime } x = 2 x^{3}-y \]

[_linear]

6.986

4837

\[ {}2 y^{\prime } x +1 = 4 i x y+y^{2} \]

[_rational, _Riccati]

2.479

4838

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

3.808

4839

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

5.408

4840

\[ {}2 y^{\prime } x = \left (1+x -6 y^{2}\right ) y \]

[_rational, _Bernoulli]

1.505

4841

\[ {}2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4.180

4842

\[ {}\left (-2 x +1\right ) y^{\prime } = 16+32 x -6 y \]

[_linear]

1.775

4843

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

2.106

4844

\[ {}2 \left (1-x \right ) y^{\prime } = 4 x \sqrt {1-x}+y \]

[_linear]

1.722

4845

\[ {}2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

2.730

4846

\[ {}3 y^{\prime } x = 3 x^{{2}/{3}}+\left (1-3 y\right ) y \]

[_rational, _Riccati]

1.954

4847

\[ {}3 y^{\prime } x = \left (2+x y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

23.499

4848

\[ {}3 y^{\prime } x = \left (1+3 x y^{3} \ln \left (x \right )\right ) y \]

[_Bernoulli]

3.418

4849

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

1.071

4850

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+x y \]

[_linear]

0.964

4851

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-x y \]

[_linear]

0.954

4852

\[ {}x^{2} y^{\prime }+\left (-2 x +1\right ) y = x^{2} \]

[_linear]

1.600

4853

\[ {}x^{2} y^{\prime } = a +b x y \]

[_linear]

1.468

4854

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

1.385

4855

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = x \left (1-{\mathrm e}^{-2 x}\right )-2 \]

[_linear]

1.797

4856

\[ {}x^{2} y^{\prime }+2 x \left (1-x \right ) y = {\mathrm e}^{x} \left (2 \,{\mathrm e}^{x}-1\right ) \]

[_linear]

1.974

4857

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.646

4858

\[ {}x^{2} y^{\prime } = \left (1+2 x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

2.904

4859

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

2.928

4860

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.139

4861

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

38.032

4862

\[ {}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

139.107

4863

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+x^{2} y^{2} \]

[_rational, _Riccati]

2.743

4864

\[ {}x^{2} y^{\prime }+2+x y \left (4+x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.654

4865

\[ {}x^{2} y^{\prime }+2+a x \left (1-x y\right )-x^{2} y^{2} = 0 \]

[_rational, _Riccati]

2.263

4866

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

2.012

4867

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+c \,x^{2} y^{2} \]

[_rational, _Riccati]

2.840

4868

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.262

4869

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{4} y^{2} \]

[_rational, _Riccati]

3.449

4870

\[ {}x^{2} y^{\prime }+\left (x^{2}+y^{2}-x \right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.044

4871

\[ {}x^{2} y^{\prime } = 2 y \left (x -y^{2}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.589

4872

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}-a y^{3} \]

[_rational, _Abel]

1.212

4873

\[ {}x^{2} y^{\prime }+a y^{2}+b \,x^{2} y^{3} = 0 \]

[_rational, _Abel]

1.529

4874

\[ {}x^{2} y^{\prime } = \left (a x +b y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.859

4875

\[ {}x^{2} y^{\prime }+x y+\sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.669

4876

\[ {}x^{2} y^{\prime } = \sec \left (y\right )+3 x \tan \left (y\right ) \]

[‘y=_G(x,y’)‘]

8.035

4877

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-x^{2}+y \]

[_linear]

1.438

4878

\[ {}\left (-x^{2}+1\right ) y^{\prime }+1 = x y \]

[_linear]

1.261

4879

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-x y \]

[_linear]

1.327

4880

\[ {}\left (x^{2}+1\right ) y^{\prime }+a +x y = 0 \]

[_linear]

1.213

4881

\[ {}\left (x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

[_linear]

2.840

4882

\[ {}\left (-x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

[_linear]

1.185

4883

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0 \]

[_separable]

1.242

4884

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2}+x y = 0 \]

[_linear]

1.315

4885

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x^{2}+x y = 0 \]

[_linear]

1.298

4886

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (x^{2}+1\right )-x y \]

[_linear]

3.838

4887

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3 x^{2}-y\right ) \]

[_linear]

3.709

4888

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

[_separable]

1.198

4889

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x -y\right ) \]

[_linear]

1.138

4890

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x^{2}+1\right )^{2}+2 x y \]

[_linear]

1.661

4891

\[ {}\left (-x^{2}+1\right ) y^{\prime }+\cos \left (x \right ) = 2 x y \]

[_linear]

2.527

4892

\[ {}\left (x^{2}+1\right ) y^{\prime } = \tan \left (x \right )-2 x y \]

[_linear]

1.729

4893

\[ {}\left (-x^{2}+1\right ) y^{\prime } = a +4 x y \]

[_linear]

1.275

4894

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

1.746

4895

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

1.879

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

1.829

4897

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-\left (2 x -y\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.780

4898

\[ {}\left (-x^{2}+1\right ) y^{\prime } = n \left (1-2 x y+y^{2}\right ) \]

[_rational, _Riccati]

4.256

4899

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

3.335

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

3.136