2.2.48 Problems 4701 to 4800

Table 2.97: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4701

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

5.025

4702

\[ {}y^{\prime } = a x +b \sqrt {y} \]

[[_homogeneous, ‘class G‘], _Chini]

3.626

4703

\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \]

[[_1st_order, _with_linear_symmetries]]

2.850

4704

\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \]

[_Bernoulli]

1.296

4705

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

1.862

4706

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

9.448

4707

\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

[‘y=_G(x,y’)‘]

5.178

4708

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

0.375

4709

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (y\right ) \]

[_separable]

2.104

4710

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

2.627

4711

\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

38.395

4712

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \]

[‘y=_G(x,y’)‘]

5.752

4713

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

1.026

4714

\[ {}y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right ) = 0 \]

[‘y=_G(x,y’)‘]

4.840

4715

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

2.350

4716

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

1.693

4717

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

1.780

4718

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

2.796

4719

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

1.556

4720

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

1.601

4721

\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \]

[_separable]

4.930

4722

\[ {}y^{\prime } = \tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

8.078

4723

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

1.840

4724

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

1.879

4725

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

1.051

4726

\[ {}y^{\prime } = \left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \]

unknown

6.940

4727

\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \]

[_separable]

4.485

4728

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

3.326

4729

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

2.326

4730

\[ {}y^{\prime } = {\mathrm e}^{y}+x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.254

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1.852

4732

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

1.681

4733

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

1.302

4734

\[ {}y^{\prime } = x^{m -1} y^{1-n} f \left (a \,x^{m}+b y^{n}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.319

4735

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

0.612

4736

\[ {}y^{\prime } = f \left (a +b x +c y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.074

4737

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

0.996

4738

\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \]

[_linear]

2.264

4739

\[ {}2 y^{\prime } = 2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \]

[‘y=_G(x,y’)‘]

57.187

4740

\[ {}2 y^{\prime }+a x = \sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \]

[[_homogeneous, ‘class G‘]]

5.864

4741

\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.567

4742

\[ {}x y^{\prime } = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

0.533

4743

\[ {}x y^{\prime }+x +y = 0 \]

[_linear]

1.785

4744

\[ {}x y^{\prime }+x^{2}-y = 0 \]

[_linear]

1.157

4745

\[ {}x y^{\prime } = x^{3}-y \]

[_linear]

1.195

4746

\[ {}x y^{\prime } = 1+x^{3}+y \]

[_linear]

1.026

4747

\[ {}x y^{\prime } = x^{m}+y \]

[_linear]

0.698

4748

\[ {}x y^{\prime } = x \sin \left (x \right )-y \]

[_linear]

1.183

4749

\[ {}x y^{\prime } = x^{2} \sin \left (x \right )+y \]

[_linear]

1.247

4750

\[ {}x y^{\prime } = x^{n} \ln \left (x \right )-y \]

[_linear]

1.171

4751

\[ {}x y^{\prime } = \sin \left (x \right )-2 y \]

[_linear]

1.236

4752

\[ {}x y^{\prime } = a y \]

[_separable]

1.246

4753

\[ {}x y^{\prime } = 1+x +a y \]

[_linear]

1.311

4754

\[ {}x y^{\prime } = a x +b y \]

[_linear]

1.566

4755

\[ {}x y^{\prime } = x^{2} a +b y \]

[_linear]

1.101

4756

\[ {}x y^{\prime } = a +b \,x^{n}+c y \]

[_linear]

1.107

4757

\[ {}x y^{\prime }+2+\left (3-x \right ) y = 0 \]

[_linear]

1.105

4758

\[ {}x y^{\prime }+x +\left (a x +2\right ) y = 0 \]

[_linear]

1.043

4759

\[ {}x y^{\prime }+\left (b x +a \right ) y = 0 \]

[_separable]

1.058

4760

\[ {}x y^{\prime } = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

1.337

4761

\[ {}x y^{\prime } = a x -\left (-b \,x^{2}+1\right ) y \]

[_linear]

1.106

4762

\[ {}x y^{\prime }+x +\left (-x^{2} a +2\right ) y = 0 \]

[_linear]

1.127

4763

\[ {}x y^{\prime }+x^{2}+y^{2} = 0 \]

[_rational, _Riccati]

1.030

4764

\[ {}x y^{\prime } = x^{2}+y \left (1+y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.359

4765

\[ {}x y^{\prime }-y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

11.352

4766

\[ {}x y^{\prime } = a +b y^{2} \]

[_separable]

1.727

4767

\[ {}x y^{\prime } = x^{2} a +y+b y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.353

4768

\[ {}x y^{\prime } = a \,x^{2 n}+\left (n +b y\right ) y \]

[_rational, _Riccati]

1.843

4769

\[ {}x y^{\prime } = a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

2.105

4770

\[ {}x y^{\prime } = k +a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

2.168

4771

\[ {}x y^{\prime }+a +x y^{2} = 0 \]

[_rational, [_Riccati, _special]]

0.991

4772

\[ {}x y^{\prime }+\left (1-x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.263

4773

\[ {}x y^{\prime } = \left (1-x y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.789

4774

\[ {}x y^{\prime } = \left (x y+1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.827

4775

\[ {}x y^{\prime } = a \,x^{3} \left (1-x y\right ) y \]

[_Bernoulli]

1.290

4776

\[ {}x y^{\prime } = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.940

4777

\[ {}x y^{\prime } = y \left (2 x y+1\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.662

4778

\[ {}x y^{\prime }+b x +\left (2+a x y\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.385

4779

\[ {}x y^{\prime }+\operatorname {a0} +\operatorname {a1} x +\left (\operatorname {a2} +\operatorname {a3} x y\right ) y = 0 \]

[_rational, _Riccati]

5.806

4780

\[ {}x y^{\prime }+a \,x^{2} y^{2}+2 y = b \]

[_rational, _Riccati]

1.398

4781

\[ {}x y^{\prime }+x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2} = 0 \]

[_rational, _Riccati]

2.189

4782

\[ {}x y^{\prime }+\left (a +b \,x^{n} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.630

4783

\[ {}x y^{\prime } = a \,x^{m}-b y-c \,x^{n} y^{2} \]

[_rational, _Riccati]

2.711

4784

\[ {}x y^{\prime } = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

2.887

4785

\[ {}x y^{\prime }+\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

1.879

4786

\[ {}x y^{\prime } = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

2.184

4787

\[ {}x y^{\prime } = y \left (1+y^{2}\right ) \]

[_separable]

3.134

4788

\[ {}x y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.696

4789

\[ {}x y^{\prime }+y = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

2.354

4790

\[ {}x y^{\prime } = a y+b \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

3.470

4791

\[ {}x y^{\prime }+2 y = a \,x^{2 k} y^{k} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.875

4792

\[ {}x y^{\prime } = 4 y-4 \sqrt {y} \]

[_separable]

3.663

4793

\[ {}x y^{\prime }+2 y = \sqrt {1+y^{2}} \]

[_separable]

2.716

4794

\[ {}x y^{\prime } = y+\sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.625

4795

\[ {}x y^{\prime } = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

63.228

4796

\[ {}x y^{\prime } = y+x \sqrt {y^{2}+x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.957

4797

\[ {}x y^{\prime } = y-x \left (x -y\right ) \sqrt {y^{2}+x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.267

4798

\[ {}x y^{\prime } = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

11.209

4799

\[ {}x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

2.457

4800

\[ {}x y^{\prime }+x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.890