2.4.14 second order change of variable on x method 1

Table 2.479: second order change of variable on x method 1

#

ODE

ODE classification

Solved?

227

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

230

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

248

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

262

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

315

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

316

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

376

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

377

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

378

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

379

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

380

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

819

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

822

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

833

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

837

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

860

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

861

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

902

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

903

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

904

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

905

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

906

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1293

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1294

\[ {}t^{2} y^{\prime \prime }+4 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1295

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

1297

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1298

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

1300

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +10 y = 0 \]

[[_Emden, _Fowler]]

1301

\[ {}y^{\prime \prime }+y^{\prime } t +{\mathrm e}^{-t^{2}} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1327

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1328

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

1330

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1331

\[ {}4 t^{2} y^{\prime \prime }-8 y^{\prime } t +9 y = 0 \]

[[_Emden, _Fowler]]

1332

\[ {}t^{2} y^{\prime \prime }+5 y^{\prime } t +13 y = 0 \]

[[_Emden, _Fowler]]

1351

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1352

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1747

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1811

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1815

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1816

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1822

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2385

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2386

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

2400

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2401

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2431

\[ {}t^{2} y^{\prime \prime }-5 y^{\prime } t +9 y = 0 \]

[[_Emden, _Fowler]]

2435

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2436

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2438

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2439

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2565

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2566

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

2581

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2582

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2631

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2632

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2634

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2635

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

3221

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

3222

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

3224

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3227

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

3228

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3230

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3231

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3232

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +3 y = \left (x -1\right ) \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3494

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3565

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3566

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3567

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

3568

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3569

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3575

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3576

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3773

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3774

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3775

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 9 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3776

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3777

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3778

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3781

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3782

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +25 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4140

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}+2 \]

[[_2nd_order, _with_linear_symmetries]]

4510

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5992

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

5993

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6026

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6193

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6194

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

6195

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

6196

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

6197

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6201

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

6249

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

6409

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6410

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6411

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

6532

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6540

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6695

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6697

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6750

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6753

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6763

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6764

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6765

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6767

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6912

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

6998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6999

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \sec \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7479

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7480

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7484

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7487

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

7489

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7492

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7499

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7527

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7674

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7675

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7676

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7697

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7701

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7702

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7704

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

7705

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

7707

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

7961

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

7962

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

7965

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7967

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

7968

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7969

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8004

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

8607

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8611

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8612

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8613

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

8614

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

8761

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

8765

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8853

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8873

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

8874

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

8875

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8961

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9139

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9140

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9141

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9142

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

9143

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9145

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9146

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9147

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9148

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 \cos \left (x \right )^{3} y = 2 \cos \left (x \right )^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9149

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9169

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11024

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11025

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11057

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11058

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )-\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11060

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \sin \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11064

\[ {}y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11080

\[ {}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11112

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11117

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11141

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11142

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11148

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11156

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11164

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11166

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11168

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-\sin \left (x \right ) x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11204

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11205

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11215

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11266

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11270

\[ {}\left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11272

\[ {}50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y = 0 \]

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11277

\[ {}\left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11294

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11316

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11329

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11345

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11349

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11355

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11388

\[ {}y^{\prime \prime } = -a \,x^{2 a -1} x^{-2 a} y^{\prime }-b^{2} x^{-2 a} y \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11391

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x \ln \left (x \right )}+\ln \left (x \right )^{2} y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11408

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12482

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12486

\[ {}x y^{\prime \prime }+n y^{\prime }+b \,x^{1-2 n} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12572

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12573

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12583

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12595

\[ {}\left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12598

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12631

\[ {}2 x \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (a \left (2-k \right ) x^{2}+b \left (1-k \right ) x -c k \right ) y^{\prime }+\lambda \,x^{k +1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12646

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12673

\[ {}x \left (x^{2 n}+a \right ) y^{\prime \prime }+\left (x^{2 n}+a -a n \right ) y^{\prime }-b^{2} x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12694

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12723

\[ {}\left (a^{2} {\mathrm e}^{2 \lambda x}+b \right ) y^{\prime \prime }-b \lambda y^{\prime }-a^{2} \lambda ^{2} k^{2} {\mathrm e}^{2 \lambda x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12724

\[ {}2 \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+a \lambda \,{\mathrm e}^{\lambda x} y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12880

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

12903

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12904

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12905

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12929

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13085

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13086

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13087

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

[[_Emden, _Fowler]]

13090

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13099

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

13323

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13324

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13452

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13453

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13460

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

13461

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13462

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13463

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13464

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13465

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

13466

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13467

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13468

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13469

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

13473

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

13474

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

13475

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13476

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 2 x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

13477

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13480

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13481

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13483

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13485

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13591

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13595

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

[[_Emden, _Fowler]]

13602

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13611

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13612

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13613

\[ {}2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13614

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13725

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13727

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13728

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13729

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]
i.c.

[[_Emden, _Fowler]]

13731

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13732

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

13734

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13833

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

13860

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13932

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-y \csc \left (x \right )^{2} = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14016

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14089

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14239

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14257

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14258

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

14274

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14275

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14276

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14277

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14278

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14424

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15229

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15230

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15232

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15233

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15234

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15235

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15308

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15311

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15312

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15313

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

15315

\[ {}x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y = 0 \]

[[_Emden, _Fowler]]

15316

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15317

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

15318

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15319

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15320

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15323

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -25 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15324

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

15325

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

15327

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15330

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15331

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15348

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15354

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15355

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15356

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24 \]

[[_2nd_order, _with_linear_symmetries]]

15357

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15358

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15359

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15360

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 4 x^{2}+2 x +3 \]

[[_2nd_order, _with_linear_symmetries]]

15434

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15435

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15436

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15438

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15439

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15442

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15448

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15449

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15453

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15466

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15469

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler]]

15474

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15480

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15485

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

15487

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15488

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15498

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15506

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

15507

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15714

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15729

\[ {}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0 \]

[[_Emden, _Fowler]]

15730

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

15755

\[ {}t^{2} y^{\prime \prime }-12 y^{\prime } t +42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15756

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15776

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16118

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16169

\[ {}3 t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

16170

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

16284

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

16369

\[ {}4 x^{2} y^{\prime \prime }-8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16370

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16371

\[ {}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16372

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

16374

\[ {}9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16375

\[ {}2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y = 0 \]

[[_Emden, _Fowler]]

16376

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16377

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

16379

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16380

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16391

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16392

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16394

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

16395

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

16396

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +36 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16399

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16400

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16401

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16402

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16408

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16410

\[ {}9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16411

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16412

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16413

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16418

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16419

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16420

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16421

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16422

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16423

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16424

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16425

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16426

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16427

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16535

\[ {}t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

16536

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16537

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16538

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16539

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

16540

\[ {}5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16541

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

16542

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

17046

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17047

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17048

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

17051

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17056

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x \left (6-\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

17060

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17061

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17150

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17492

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17556

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17557

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17558

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

17561

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

17562

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

17563

\[ {}2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

17565

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +17 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17567

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17602

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17603

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 x^{2}+2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17604

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17636

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17637

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17930

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

17938

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime } = y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17956

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

17957

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17960

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17964

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18181

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

18192

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18241

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

18242

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

18245

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18247

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

18248

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18249

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18250

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18285

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18442

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

[[_Emden, _Fowler]]

18445

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18535

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

18544

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18547

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18653

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18857

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

18859

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18863

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18869

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18875

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18935

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18942

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18943

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18944

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18945

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18960

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18961

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18964

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18974

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

19252

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

19255

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19256

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19257

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19259

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19262

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19270

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19271

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19274

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19284

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19389

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19390

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19391

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19392

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +m^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19393

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-y \sin \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19394

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19395

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19415

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19416

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19417

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {a^{2} y}{-x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19419

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 8 x^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19425

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19427

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19429

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19431

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x = m^{2} y \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19432

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19518

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19521

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19556

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {y \csc \left (x \right )^{2}}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19557

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19558

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19559

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 \cos \left (x \right )^{3} y = 2 \cos \left (x \right )^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19560

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19564

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]