# |
ODE |
CAS classification |
Solved? |
\[
{}x^{\prime \prime } = 50
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = -20
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 3 t
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 2 t +1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 4 \left (3+t \right )^{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {1}{\sqrt {t +4}}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 50 \sin \left (5 t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}35 y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 12
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 4+6 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-i y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+2 y = 3 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \cosh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )+\cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (x \right )^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \cos \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+45 x = 50 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+10 x^{\prime }+650 x = 100 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}35 y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 12
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 6 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 4+6 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-i y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+8 x^{\prime }+16 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x^{\prime \prime }+12 x^{\prime }+50 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+10 x^{\prime }+125 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 3 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \cosh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (x \right )^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \cos \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}u^{\prime \prime }-u^{\prime }+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}u^{\prime \prime }+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{{3}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+w^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y = t^{3}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t \,{\mathrm e}^{\alpha t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = t^{2} {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = t^{2}+t +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = t^{2} {\mathrm e}^{7 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = \left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = \sin \left (t \right )+t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t}+{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = t^{{3}/{2}} {\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 3 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = \sec \left (a x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y = {\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \csc \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right ) x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \cos \left (x \right ) x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = k^{2} y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+k^{2} x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime }-k^{2} x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}f^{\prime \prime }+2 f^{\prime }+5 f = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x^{n}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x^{n}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 9 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2 \tanh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 5 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 5 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{3}+x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = x^{3}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = A \cos \left (x p \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8} = \frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 8 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}25 y^{\prime \prime }-30 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-6 y^{\prime }+y = \left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 \sin \left (x \right ) x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 36 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+5 y = 5 \,{\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \left (x +1\right ) {\mathrm e}^{x}+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 4 \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 12 x^{2} {\mathrm e}^{x}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (x \right )-3 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (x \right )+10 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {1}{x}-\frac {2}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\sinh \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\sqrt {1-{\mathrm e}^{2 x}}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 15 \,{\mathrm e}^{-x} \sqrt {x +1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{x}\right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 k y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}+2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 8 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 10
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 16
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime } = 2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 8 \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left (-1+{\mathrm e}^{2 x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}r^{\prime \prime }-6 r^{\prime }+9 r = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = -4 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-\omega ^{2} x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+42 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \cosh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 8
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 5 x^{2}+x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 3 \sin \left (x \right )-4 y
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2} = -48 x
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 9 x^{2}+2 x -1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime } = -3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4-x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \,{\mathrm e}^{x} \left (1-x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 5
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (2 \tan \left (x \right )+1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+7 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+6 y = 10
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = f \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}s^{\prime \prime }+2 s^{\prime }+s = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 1+3 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = x +2
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 1+3 x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }-6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 12 x -10
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-5 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+4 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = \tan \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = -3 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\beta ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = -\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 4 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = f \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = k
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 \sin \left (x \right )-4
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{2} y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a y y^{\prime \prime }+b y = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+c y^{\prime }+k y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}+x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{2}+x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{3}+x^{2}+x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y-\sin \left (n x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y-\cos \left (b x \right ) a = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+l y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime } = -3 \sqrt {t}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime } = 3 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+6 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-12 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 12
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x = \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3025 x = \cos \left (45 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x = t \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x = \frac {1}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \frac {1}{1+t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+29 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+58 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+15 y = 9 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{1+\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }+2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}z^{\prime \prime }-4 z^{\prime }+13 z = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\theta ^{\prime \prime }+4 \theta = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+10 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\omega ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime } = t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-x = \frac {1}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cot \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+10 y = 100
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cosh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = t \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = y+x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-7 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = f \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\alpha ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = a^{2} y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 9 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+12 y = 7 y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}s^{\prime \prime }-a^{2} s = 1+t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 5 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2-6 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }+4 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 31
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 27 x +18
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }-7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 5
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 10
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+6 y = -8
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = -3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = -{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3 t +2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 3 t +2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {x +1}{x -1}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = \sin \left (2 x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-3 = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y^{\prime }-6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-24 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}25 y^{\prime \prime }-10 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+29 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 36
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -200
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 9 x^{4}-9
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 20
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 100
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \csc \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-30 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }-8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+20 y^{\prime }+100 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }-10 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+40 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+45 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = 2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+24 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+18 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}a y^{\prime \prime }+b y^{\prime }+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+100 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}a y^{\prime \prime }+2 b y^{\prime }+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }-16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2 t -4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3-4 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 3 t^{4}-2 t
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+y^{\prime }-4 y = -3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 18
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 32 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 3 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = -1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y^{\prime } = t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \csc \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \cot \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2 \sinh \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \csc \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+34 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}20 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}12 y^{\prime \prime }+8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = -t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 5 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{\prime \prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 x^{\prime \prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+64 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+100 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+16 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+256 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}10 x^{\prime \prime }+\frac {x}{10} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+13 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+20 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ -t +1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+16 x = t \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 x \ln \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = \cos \left (5 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = k
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 9
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime } = 8 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}7 y^{\prime \prime }-y^{\prime } = 14 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime } = \sin \left (x \right ) x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x +\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = \left (1+\sin \left (x \right )\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2-2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 2 x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = -2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-5 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+6 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha ^{2} y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \cos \left (\pi x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-24 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 3 \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = -3 t \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = t^{2} {\mathrm e}^{3 t}+6
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+y = t^{2}+3 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 \sin \left (2 t \right )+t \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}u^{\prime \prime }+w_{0}^{2} u = \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = 2 \sinh \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 2 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t^{2}+3 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t}+4
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 3 t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-t} \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = t \left (1+\sin \left (t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 t \,{\mathrm e}^{-t} \cos \left (2 t \right )-2 t \,{\mathrm e}^{-2 t} \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{-t +\pi } & \pi <t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+y = 2 \sec \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-k y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 4 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-4 y^{\prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }-8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 12 x -10
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = \sin \left (b x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+y = x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-2 x} x^{2}+3 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-5 x^{\prime }+6 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+5 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }+2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime }+2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-x = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-x = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\theta ^{\prime \prime } = -p^{2} \theta
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\theta ^{\prime \prime }-p^{2} \theta = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+12 y = 7 y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}r^{\prime \prime }-a^{2} r = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = -m^{2} y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+2 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = -P \left (L -x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = -a^{2} y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x = y^{\prime \prime }+y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-54 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-m^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2+5 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \cos \left (x \right ) x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = \sec \left (a x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+n^{2} y = {\mathrm e}^{x} x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right ) x +\left (x^{2}+1\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {a}{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}a y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-n^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x^{\prime \prime }+5 x^{\prime }-12 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-54 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 x^{\prime \prime }+18 x^{\prime }-16 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2+5 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = x +\sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {a}{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}a y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {2}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+9 y^{\prime }-18 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+n^{2} y = \sec \left (n x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+y = a \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \sin \left (x \right ) x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = \sec \left (a x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|