2.3.27 first order ode form A1

Table 2.447: first order ode form A1

#

ODE

ODE classification

Solved?

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

159

\[ {}y^{\prime } = f \left (a x +b y+c \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

165

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

3296

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4711

\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4736

\[ {}y^{\prime } = f \left (a +b x +c y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6129

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6256

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

6465

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6883

\[ {}\sin \left (y^{\prime }\right ) = x +y \]

[[_homogeneous, ‘class C‘], _dAlembert]

7069

\[ {}y^{\prime } = {\mathrm e}^{3 x +2 y} \]

[_separable]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7407

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

7411

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

8770

\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

8771

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9050

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

9051

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

10090

\[ {}y^{\prime }-\cos \left (b x +a y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10097

\[ {}y^{\prime }-f \left (a x +b y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12992

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

13784

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13881

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14298

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14299

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14972

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14979

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

15132

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15133

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15134

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15838

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15839

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15876

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15877

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

16614

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

16645

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

16821

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18023

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]