# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -1+{\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -1+{\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -x \,{\mathrm e}^{y}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -2 y}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-6 x \,{\mathrm e}^{x -y}-1 = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{y}+x
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-2 y+3 x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 10+{\mathrm e}^{x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right )
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
|
\[
{}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right )
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
|
\[
{}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{-2 x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = t^{2} {\mathrm e}^{-x}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{t +x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{y-x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x \,{\mathrm e}^{y}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 y+10 t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 y+2 t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{t -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-1 = {\mathrm e}^{x +2 y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = x^{2} {\mathrm e}^{-3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-2 y+3 x}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = b \,{\mathrm e}^{x}
\] |
[_quadrature] |
✓ |
|