2.3.18 first order ode ID 1

Table 2.411: first order ode ID 1

#

ODE

CAS classification

Solved?

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

4095

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4105

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4215

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4226

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4435

\[ {}y^{\prime }-6 x \,{\mathrm e}^{x -y}-1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

4730

\[ {}y^{\prime } = {\mathrm e}^{y}+x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

5915

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6466

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

7078

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7410

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

8658

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

8726

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

8727

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8728

\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

8729

\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

8730

\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9765

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

12705

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

12721

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

12737

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12739

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14045

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14086

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

14091

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

14282

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14726

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14745

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14746

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

14879

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14881

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15585

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15586

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15617

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15623

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15624

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15816

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

16568

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16995

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

17770

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

17772

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

18171

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]