# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \ln \left (1+y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}1+y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 4 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \sqrt {y^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y+y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x-x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 10 x-x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 1-x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 9-4 x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 3 x \left (5-x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 3 x \left (5-x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 4 x \left (7-x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 7 x \left (x-13\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \ln \left (1+y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}1+y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y+y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {a y+b}{d +c y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{3}+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y+b y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (-2+y\right ) \left (-1+y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -1+{\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -1+{\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -k \left (-1+y\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2} \left (y^{2}-1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (1-y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -b \sqrt {y}+a y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2} \left (4-y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left (1-y\right )^{2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y^{\frac {a -1}{a}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {| y|}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+a y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y-b y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{2}/{5}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-2 y = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 y^{3}+3 y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}+k^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}-3 y+2 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}+5 y-6 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}+8 y+7 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}+14 y+50 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}6 y^{\prime }+6 y^{2}-y-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}36 y^{\prime }+36 y^{2}-12 y+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = k \left (a -y\right ) \left (b -y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = k \left (a -y\right ) \left (b -y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x \left (-x+1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -x \left (-x+1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (y^{2}+x^{2}\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2 \sqrt {y-1}}{3}
\] |
[_quadrature] |
✓ |
|
\[
{}m v^{\prime } = m g -k v^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 \cos \left (y\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} y^{\prime } = 2+3 y^{6}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a +b y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (a +b y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {{| y|}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {a +b y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \sqrt {a +b y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a +b \cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a +b \sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {a +b \cos \left (y\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a f \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime } = \sqrt {y^{2}+a^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime } = \sqrt {y^{2}-a^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (y+2\right ) y^{\prime }+a x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 1-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a +b y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = \left (y-1\right ) y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right )
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2} y^{n}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y^{\prime }+b y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (y-1\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1-a y\right ) {y^{\prime }}^{2} = a y
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2} = a^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = a y^{\prime }+b {y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+a y = b
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+b^{2} y^{2} = a^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1+y\right ) y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 y^{2}-3 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime }-x^{3} = x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-3 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}u^{\prime } = \alpha \left (1-u\right )-\beta u
\] |
[_quadrature] |
✓ |
|
\[
{}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-a^{2} y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a^{2}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+5 y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-2 y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}L y^{\prime }+R y = E
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}1+y^{2}+y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{1-y}
\] |
[_quadrature] |
✓ |
|
\[
{}p^{\prime } = a p-b p^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}f^{\prime } = \frac {1}{f}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {1-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (1-y^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = b y
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = b y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2}-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y^{2}-3 y+4 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{2} a -b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-\sqrt {{| y|}} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-a \sqrt {1+y^{2}}-b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-a \cos \left (y\right )+b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime }-\sqrt {y^{2} a +b} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2}-a^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{3}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y^{\prime }+b y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}a {y^{\prime }}^{2}+b y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = f \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime }-y = A
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x \left (1-\frac {x}{4}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{-2 x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}u^{\prime } = \frac {1}{5-2 u}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = a x+b
\] |
[_quadrature] |
✓ |
|
\[
{}Q^{\prime } = \frac {Q}{4+Q^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = r \left (a -y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y+\frac {1}{y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{2 y+1}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x \left (x+4\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = a x+b
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = a x+b x^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -x+1
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x \left (2-x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x^{2}-x^{4}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime }+p x = q
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \lambda x
\] |
[_quadrature] |
✓ |
|
\[
{}m v^{\prime } = -m g +k v^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = k x-x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -x \left (k^{2}+x^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = k x-x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 9 y^{4}
\] |
[_quadrature] |
✓ |
|
\[
{}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{2} = 4
\] |
[_quadrature] |
✓ |
|
\[
{}y y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+\frac {1}{2 y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-2 \sqrt {{| y|}} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {| y|}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \ln \left (y-1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 y-5
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y+b
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -2 y+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}2 y y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+4 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-i y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 1+x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{2 y+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (1-y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sec \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1-y^{2}}{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{2 y+3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+5}{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y \left (1-y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y \left (1-y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
|
\[
{}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
|
\[
{}v^{\prime } = -\frac {v}{R C}
\] |
[_quadrature] |
✓ |
|
\[
{}v^{\prime } = \frac {K -v}{R C}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = \left (3-w\right ) \left (w+1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = \left (3-w\right ) \left (w+1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2-y
\] |
[_quadrature] |
✓ |
|
\[
{}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\left (2+y\right )^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y \left (-2+y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y \left (-2+y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y \left (-2+y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y \left (-2+y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = \left (1-w\right ) \sin \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{-2+y}
\] |
[_quadrature] |
✓ |
|
\[
{}v^{\prime } = -v^{2}-2 v-2
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = 3 w^{3}-12 w^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+\cos \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \tan \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \ln \left ({| y|}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -\sin \left (y\right )^{5}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (y\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3-2 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3+y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 y-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-2 y+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3-\sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y^{3} = 8
\] |
[_quadrature] |
✓ |
|
\[
{}y^{3}-25 y+y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+2 y-y^{2} = -2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+4 y = 8
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}+9
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-4 y = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 200 y-2 y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \tan \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-y}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 200 y-2 y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-2 y = -10
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 y+8
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+4 y = y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+2 y = 6
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-3 y = 6
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-3 y = 6
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+3 y = 3 y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (y^{2}-4\right ) y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2}+1-y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{5}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 6 y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {25-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {25-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {25-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {25-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y^{2}}{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+k y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-3 y+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}+y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{3}+y
\] |
[_quadrature] |
✓ |
|
\[
{}1 = \cos \left (y\right ) y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{\ln \left (y\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left (3 y+1\right )^{4}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}-y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 16 y-8 y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 12+4 y-y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-y = 10
\] |
[_quadrature] |
✓ |
|
\[
{}-1+3 y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y = 5
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y+3 y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {1-y^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-\cot \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left (y-1\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{-y} y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y
\] |
[_quadrature] |
✓ |
|
\[
{}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}}
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } \ln \left (y^{\prime }\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right )
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{2}/{3}}+a
\] |
[_quadrature] |
✓ |
|
\[
{}\left (y^{\prime }-1\right )^{2} = y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {a y+b}{d +c y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y^{{1}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y+\sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = r y-k^{2} y^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a y+b y^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+y-y^{{1}/{4}} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {x \sqrt {6 x-9}}{3}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \ln \left (y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \ln \left (y\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = k y
\] |
[_quadrature] |
✓ |
|
\[
{}1+y^{2}+y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}v^{\prime } = g -\frac {k v^{2}}{m}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = x^{2}-3 x+2
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = b \,{\mathrm e}^{x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \left (x-1\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \sqrt {x^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 2 \sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \tan \left (x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = -\lambda x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+c y = a
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = 2 y^{\prime }+3 {y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b
\] |
[_quadrature] |
✓ |
|
\[
{}a {y^{\prime }}^{3} = 27 y
\] |
[_quadrature] |
✓ |
|