2.3.16 first order ode autonomous

Table 2.407: first order ode autonomous

#

ODE

CAS classification

Solved?

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

63

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

70

\[ {}{y^{\prime }}^{2} = 4 y \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

72

\[ {}y^{\prime } = y \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

698

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1157

\[ {}y^{\prime } = \frac {a y+b}{d +c y} \]

[_quadrature]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1183

\[ {}y^{\prime } = y \left (-2+y\right ) \left (-1+y\right ) \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1186

\[ {}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1188

\[ {}y^{\prime } = y^{2} \left (y^{2}-1\right ) \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1191

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

1192

\[ {}y^{\prime } = \left (1-y\right )^{2} y^{2} \]

[_quadrature]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1535

\[ {}y^{\prime } = {| y|}+1 \]
i.c.

[_quadrature]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

1682

\[ {}14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1715

\[ {}2 y^{3}+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

[_quadrature]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

[_quadrature]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

[_quadrature]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

[_quadrature]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

[_quadrature]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

[_quadrature]

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2809

\[ {}x^{\prime } = x \left (-x+1\right ) \]

[_quadrature]

2810

\[ {}x^{\prime } = -x \left (-x+1\right ) \]

[_quadrature]

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2866

\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = 1 \]
i.c.

[_quadrature]

3058

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3289

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

3294

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (y^{2}+x^{2}\right ) = 0 \]

[_quadrature]

3299

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

3305

\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \]

[_quadrature]

3414

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3425

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3426

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3433

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3434

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3435

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3436

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3437

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3439

\[ {}y^{\prime } = -y \]

[_quadrature]

3447

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3448

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3561

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3608

\[ {}y^{\prime } = \frac {2 \sqrt {y-1}}{3} \]
i.c.

[_quadrature]

3609

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

4087

\[ {}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

[_quadrature]

4099

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

4218

\[ {}y^{\prime } = 3 \cos \left (y\right )^{2} \]

[_quadrature]

4306

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

4662

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4667

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4688

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4689

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4700

\[ {}y^{\prime } = \sqrt {{| y|}} \]

[_quadrature]

4701

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

4705

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4706

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

4713

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4725

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4729

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4735

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

5024

\[ {}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

5027

\[ {}y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

[_quadrature]

5028

\[ {}y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

[_quadrature]

5117

\[ {}x \left (y+2\right ) y^{\prime }+a x = 0 \]

[_quadrature]

5334

\[ {}{y^{\prime }}^{2} = y \]

[_quadrature]

5340

\[ {}{y^{\prime }}^{2} = 1+y^{2} \]

[_quadrature]

5341

\[ {}{y^{\prime }}^{2} = 1-y^{2} \]

[_quadrature]

5342

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

5343

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

5344

\[ {}{y^{\prime }}^{2} = a +b y^{2} \]

[_quadrature]

5346

\[ {}{y^{\prime }}^{2} = \left (y-1\right ) y^{2} \]

[_quadrature]

5347

\[ {}{y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \]

[_quadrature]

5348

\[ {}{y^{\prime }}^{2} = a^{2} y^{n} \]

[_quadrature]

5349

\[ {}{y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \]

[_quadrature]

5358

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

5363

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5395

\[ {}{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (y-1\right ) = 0 \]

[_quadrature]

5396

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0 \]

[_quadrature]

5397

\[ {}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

[_quadrature]

5398

\[ {}{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0 \]

[_quadrature]

5399

\[ {}{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0 \]

[_quadrature]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5405

\[ {}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0 \]

[_quadrature]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5417

\[ {}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0 \]

[_quadrature]

5454

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

5455

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5529

\[ {}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5530

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5536

\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5547

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5558

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

5559

\[ {}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2} \]

[_quadrature]

5572

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

5588

\[ {}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2} \]

[_quadrature]

5592

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

5593

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

5601

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

5606

\[ {}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5607

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

5610

\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

[_quadrature]

5612

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5615

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5619

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5645

\[ {}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

[_quadrature]

5651

\[ {}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

[_quadrature]

5652

\[ {}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0 \]

[_quadrature]

5654

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

5655

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

[_quadrature]

5664

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y \]

[_quadrature]

5674

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

[_quadrature]

5678

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5754

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5756

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

5840

\[ {}y^{\prime }+a y = b \]

[_quadrature]

6036

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

6092

\[ {}y^{\prime } = y \]

[_quadrature]

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

6103

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

6257

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

6293

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

6680

\[ {}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

6686

\[ {}\left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

[_quadrature]

7065

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

7069

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

7191

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

7220

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

7264

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

7266

\[ {}y^{\prime } = k y \]

[_quadrature]

7267

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

7273

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

7285

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

7286

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7287

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7412

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

7413

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7414

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7452

\[ {}y^{\prime } = k y \]

[_quadrature]

7462

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

7751

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

7753

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

7755

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

7757

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

8117

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

8120

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8124

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

8129

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8215

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8229

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

8393

\[ {}y^{\prime } = 1+y \]

[_quadrature]

8396

\[ {}y^{\prime } = y \]

[_quadrature]

8406

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

8420

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

8421

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

8434

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8465

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

8470

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8472

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8536

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

8628

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8652

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

[_quadrature]

8669

\[ {}y^{\prime } = y \]

[_quadrature]

8670

\[ {}y^{\prime } = b y \]

[_quadrature]

8677

\[ {}c y^{\prime } = y \]

[_quadrature]

8678

\[ {}c y^{\prime } = b y \]

[_quadrature]

8847

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

9702

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

9707

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

9713

\[ {}y^{\prime }+y^{2} a -b = 0 \]

[_quadrature]

9716

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

9729

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

9747

\[ {}y^{\prime }-\sqrt {{| y|}} = 0 \]

[_quadrature]

9749

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

9766

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

9898

\[ {}y y^{\prime }-\sqrt {y^{2} a +b} = 0 \]

[_quadrature]

10049

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

10058

\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

10060

\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \]

[_quadrature]

10061

\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \]

[_quadrature]

10062

\[ {}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0 \]

[_quadrature]

10063

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

10065

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

10078

\[ {}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

[_quadrature]

10080

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10084

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10091

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

10132

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10165

\[ {}\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

10179

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

10185

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

10201

\[ {}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0 \]

[_quadrature]

10205

\[ {}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[_quadrature]

10207

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

10211

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

10213

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10217

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

10219

\[ {}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0 \]

[_quadrature]

10226

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

10232

\[ {}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[_quadrature]

10235

\[ {}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

[_quadrature]

10240

\[ {}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

[_quadrature]

10255

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

[_quadrature]

11678

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

12002

\[ {}y y^{\prime }-y = A \]

[_quadrature]

12552

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12554

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

12557

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12703

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12705

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

12710

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

12720

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

12721

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

12722

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

12723

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

12724

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12725

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

12726

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

12727

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

12732

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

12734

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

12738

\[ {}x^{\prime } = x \left (x+4\right ) \]
i.c.

[_quadrature]

12774

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12780

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

12936

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

12947

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

13390

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

13391

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

13392

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

13393

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

13394

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

13398

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13400

\[ {}x^{\prime }+p x = q \]

[_quadrature]

13403

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

13404

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

13405

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

13406

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

13425

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13535

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13541

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

[_quadrature]

13542

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

[_quadrature]

13642

\[ {}y y^{\prime } = 1 \]

[_quadrature]

13895

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

13991

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

13993

\[ {}y^{\prime }-2 \sqrt {{| y|}} = 0 \]

[_quadrature]

13995

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

13998

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

14006

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

14014

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

14029

\[ {}y^{\prime } = 1-y \]

[_quadrature]

14030

\[ {}y^{\prime } = 1+y \]

[_quadrature]

14031

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14032

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

14041

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

14042

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

14044

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

14052

\[ {}y^{\prime } = \ln \left (y-1\right ) \]

[_quadrature]

14053

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

[_quadrature]

14061

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

14062

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

14063

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

14083

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

14084

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14085

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14089

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

14093

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

14098

\[ {}y^{\prime } = 1+4 y \]
i.c.

[_quadrature]

14118

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14119

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14120

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14121

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14122

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14123

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14138

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

14139

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

14185

\[ {}y^{\prime }-i y = 0 \]
i.c.

[_quadrature]

14280

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

14281

\[ {}y^{\prime } = 2-y \]

[_quadrature]

14282

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14283

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

14288

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

14290

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

14295

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14297

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

14300

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14302

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14304

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14307

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

14309

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

14311

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

14314

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

14315

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

14316

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

14318

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

14322

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14323

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14324

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14325

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14326

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14327

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

14328

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14329

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

14335

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

14337

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

14338

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

14339

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

14341

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14344

\[ {}y^{\prime } = \sin \left (y\right ) \]
i.c.

[_quadrature]

14345

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14346

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14347

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14348

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14349

\[ {}y^{\prime } = y^{2}-y^{3} \]
i.c.

[_quadrature]

14351

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

14352

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

14353

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]
i.c.

[_quadrature]

14354

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14355

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14356

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14357

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14358

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

14359

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14361

\[ {}y^{\prime } = \frac {1}{\left (2+y\right )^{2}} \]
i.c.

[_quadrature]

14363

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14364

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14365

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14366

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14367

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14368

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14369

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14370

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14371

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14372

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14373

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14374

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14375

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

14376

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14377

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14378

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14379

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14380

\[ {}w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

[_quadrature]

14381

\[ {}y^{\prime } = \frac {1}{-2+y} \]

[_quadrature]

14382

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

14383

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

14384

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

14385

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14386

\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \]

[_quadrature]

14387

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

14388

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14389

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14390

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14391

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14392

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14393

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14394

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14395

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

14396

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14397

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

14398

\[ {}y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14399

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14400

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14401

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

14441

\[ {}y^{\prime } = 3 y \]

[_quadrature]

14443

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

14445

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

14448

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

14454

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

14455

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

14465

\[ {}y^{\prime } = 1-y^{2} \]
i.c.

[_quadrature]

14467

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

14472

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14656

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

14702

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

14705

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

14708

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

14710

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

14715

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

14722

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

14732

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

14734

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

14736

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14740

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14745

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14746

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

14751

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14752

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

14764

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

14767

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

14769

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

14779

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14780

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14796

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

14849

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

14863

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

15460

\[ {}{y^{\prime }}^{2}+y = 0 \]

[_quadrature]

15466

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

15496

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

15540

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15544

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15548

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15549

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15551

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15552

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15553

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15554

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15555

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15566

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15569

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15573

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15582

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15601

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

15604

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15605

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15606

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15607

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15608

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15609

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15612

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

15618

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

15634

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

15635

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15636

\[ {}y^{\prime } = -y \]

[_quadrature]

15637

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15638

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15639

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

15641

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

15710

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

15832

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

16342

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

16345

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

16348

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

16358

\[ {}y^{\prime } = \left (y-1\right )^{2} \]

[_quadrature]

16372

\[ {}y^{\prime } = y \]

[_quadrature]

16373

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

16385

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

16409

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

16499

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16502

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

16503

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

[_quadrature]

16506

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

[_quadrature]

16507

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

16512

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

16529

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

16531

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16532

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

16536

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

17012

\[ {}y^{\prime } = \frac {a y+b}{d +c y} \]

[_quadrature]

17060

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

17064

\[ {}y^{\prime }+y^{3} = 0 \]
i.c.

[_quadrature]

17115

\[ {}y^{\prime } = y+\sqrt {y} \]

[_quadrature]

17116

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

17117

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

17131

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

[_quadrature]

17219

\[ {}x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]
i.c.

[_quadrature]

17614

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17618

\[ {}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0 \]

[_quadrature]

17619

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

17620

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

17633

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

17634

\[ {}y^{\prime } = y \ln \left (y\right ) \]

[_quadrature]

17635

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

[_quadrature]

17640

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

17735

\[ {}y^{\prime } = k y \]

[_quadrature]

17745

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

17779

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

18170

\[ {}x^{\prime } = x^{2}-3 x+2 \]
i.c.

[_quadrature]

18171

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18172

\[ {}x^{\prime } = \left (x-1\right )^{2} \]
i.c.

[_quadrature]

18173

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

18174

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

18175

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

18190

\[ {}x^{\prime } = -\lambda x \]

[_quadrature]

18208

\[ {}y^{\prime }+c y = a \]

[_quadrature]

18219

\[ {}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right ) \]

[_quadrature]

18236

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

18477

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18487

\[ {}y = 2 y^{\prime }+3 {y^{\prime }}^{2} \]

[_quadrature]

18490

\[ {}y^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

18517

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

18521

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

[_quadrature]

18532

\[ {}a {y^{\prime }}^{3} = 27 y \]

[_quadrature]