2.3.6 first order ode homogD

Table 2.405: first order ode homogD

#

ODE

CAS classification

Solved?

112

\[ {}x^{2} y^{\prime } = x y+x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

736

\[ {}x^{2} y^{\prime } = x y+x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1243

\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

1626

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1645

\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2883

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2884

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2887

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2889

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2893

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3556

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3649

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4244

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4245

\[ {}x y^{\prime } = y+2 \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class D‘]]

4315

\[ {}-y+x y^{\prime } = x \cot \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4316

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4350

\[ {}y-2 x^{3} \tan \left (\frac {y}{x}\right )-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘]]

4399

\[ {}x y^{\prime } = y-{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4405

\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4422

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4441

\[ {}x +\sin \left (\frac {y}{x}\right )^{2} \left (y-x y^{\prime }\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4801

\[ {}x y^{\prime } = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4805

\[ {}x y^{\prime }-y+x \sec \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4806

\[ {}x y^{\prime } = y+x \sec \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4808

\[ {}x y^{\prime } = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4811

\[ {}x y^{\prime } = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4813

\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4818

\[ {}x y^{\prime } = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5774

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5782

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5783

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5893

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6130

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7422

\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7423

\[ {}x y^{\prime } = y-{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7742

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7874

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7875

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8887

\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \]

[[_homogeneous, ‘class D‘]]

10134

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10136

\[ {}x y^{\prime }+x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10370

\[ {}\left (-y+x y^{\prime }\right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12728

\[ {}{\mathrm e}^{\frac {y}{x}} x +y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12733

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13221

\[ {}x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13781

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

14201

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

15104

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

16658

\[ {}x y^{\prime } = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17822

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18028

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

18029

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

19000

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

19004

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]