2.3.15 first order ode quadrature

Table 2.405: first order ode quadrature

#

ODE

CAS classification

Solved?

1

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

2

\[ {}y^{\prime } = \left (-2+x \right )^{2} \]
i.c.

[_quadrature]

3

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

4

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

5

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

6

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

7

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

8

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

9

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

10

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

652

\[ {}y^{\prime } = \left (-2+x \right )^{2} \]
i.c.

[_quadrature]

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

746

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

1526

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3309

\[ {}x = {y^{\prime }}^{2}+y^{\prime } \]

[_quadrature]

3403

\[ {}y^{\prime } = 2 \]

[_quadrature]

3404

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

3405

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

3406

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

3407

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

3408

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

3415

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

3416

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

[_quadrature]

3417

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

3418

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

3419

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

[_quadrature]

3420

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

3421

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

3422

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

3423

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

3424

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

3428

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]
i.c.

[_quadrature]

3429

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

3430

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

3543

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

3582

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

3583

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

3586

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

4091

\[ {}y^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

4092

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]

[_quadrature]

4106

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

4108

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

4115

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

4229

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right ) \]
i.c.

[_quadrature]

4360

\[ {}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0 \]

[_quadrature]

4385

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime } \]

[_quadrature]

4387

\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

4439

\[ {}y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1 \]

[_quadrature]

4608

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

4708

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

4742

\[ {}x y^{\prime } = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

4828

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

4995

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4996

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5002

\[ {}y^{\prime } \sqrt {X} = 0 \]

[_quadrature]

5003

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

5004

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5007

\[ {}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}} \]

[_quadrature]

5333

\[ {}{y^{\prime }}^{2} = a \,x^{n} \]

[_quadrature]

5356

\[ {}{y^{\prime }}^{2}+2 y^{\prime }+x = 0 \]

[_quadrature]

5359

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5360

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

5361

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b = 0 \]

[_quadrature]

5362

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

5364

\[ {}{y^{\prime }}^{2}+x y^{\prime }+1 = 0 \]

[_quadrature]

5373

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+1 = 0 \]

[_quadrature]

5374

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0 \]

[_quadrature]

5378

\[ {}{y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right ) = 0 \]

[_quadrature]

5382

\[ {}{y^{\prime }}^{2}+a x y^{\prime } = b c \,x^{2} \]

[_quadrature]

5386

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 x y^{\prime } = 0 \]

[_quadrature]

5390

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

5391

\[ {}{y^{\prime }}^{2}+y y^{\prime } = x \left (x +y\right ) \]

[_quadrature]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5396

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0 \]

[_quadrature]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5404

\[ {}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5420

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

5426

\[ {}x {y^{\prime }}^{2} = a \]

[_quadrature]

5427

\[ {}x {y^{\prime }}^{2} = -x^{2}+a \]

[_quadrature]

5435

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5454

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5464

\[ {}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2} \]

[_quadrature]

5469

\[ {}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5471

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5496

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5497

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0 \]

[_quadrature]

5498

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5499

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2} \]

[_quadrature]

5506

\[ {}x^{3} {y^{\prime }}^{2} = a \]

[_quadrature]

5510

\[ {}4 x \left (-x +a \right ) \left (b -x \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2} \]

[_quadrature]

5514

\[ {}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5527

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5529

\[ {}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5537

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5584

\[ {}{y^{\prime }}^{3} = b x +a \]

[_quadrature]

5585

\[ {}{y^{\prime }}^{3} = a \,x^{n} \]

[_quadrature]

5591

\[ {}{y^{\prime }}^{3}+y^{\prime }+a -b x = 0 \]

[_quadrature]

5594

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

5598

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

5611

\[ {}{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3} = 0 \]

[_quadrature]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5621

\[ {}4 {y^{\prime }}^{3}+4 y^{\prime } = x \]

[_quadrature]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5630

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

5637

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5663

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x \]

[_quadrature]

5665

\[ {}\sqrt {1+{y^{\prime }}^{2}} = x y^{\prime } \]

[_quadrature]

5672

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

5673

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

[_quadrature]

5679

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = 0 \]

[_quadrature]

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

5752

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

[_quadrature]

5755

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5757

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

5758

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

[_quadrature]

5759

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

5760

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

[_quadrature]

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

6028

\[ {}{y^{\prime }}^{2} \left (-x^{2}+1\right )+1 = 0 \]

[_quadrature]

6097

\[ {}x y y^{\prime }-x y = y \]
i.c.

[_quadrature]

6282

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

6419

\[ {}x y^{\prime } = x^{2}+2 x -3 \]

[_quadrature]

6423

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

6619

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

6668

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0 \]

[_quadrature]

7082

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

7115

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]
i.c.

[_quadrature]

7192

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7256

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

7449

\[ {}y^{\prime } = 2 x \]

[_quadrature]

7463

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

7464

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

7465

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

7466

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

7467

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

7468

\[ {}x y^{\prime } = 1 \]

[_quadrature]

7469

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

7470

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

7471

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

7472

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

7473

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

7474

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

7475

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

7476

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7477

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7478

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

8112

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8115

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8116

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8117

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

8122

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

8128

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8129

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8210

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8221

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

8394

\[ {}y^{\prime } = x +1 \]

[_quadrature]

8395

\[ {}y^{\prime } = x \]

[_quadrature]

8397

\[ {}y^{\prime } = 0 \]

[_quadrature]

8398

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

8403

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

8412

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

8413

\[ {}x y^{\prime } = 0 \]

[_quadrature]

8414

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

[_quadrature]

8415

\[ {}\frac {y^{\prime }}{x} = 0 \]

[_quadrature]

8416

\[ {}y^{\prime } = 0 \]

[_quadrature]

8661

\[ {}y^{\prime } = 0 \]

[_quadrature]

8662

\[ {}y^{\prime } = a \]

[_quadrature]

8663

\[ {}y^{\prime } = x \]

[_quadrature]

8664

\[ {}y^{\prime } = 1 \]

[_quadrature]

8665

\[ {}y^{\prime } = a x \]

[_quadrature]

8672

\[ {}c y^{\prime } = 0 \]

[_quadrature]

8673

\[ {}c y^{\prime } = a \]

[_quadrature]

8674

\[ {}c y^{\prime } = a x \]

[_quadrature]

8684

\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \]

[_quadrature]

8685

\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \]

[_quadrature]

8691

\[ {}x y^{\prime } = 0 \]

[_quadrature]

8692

\[ {}5 y^{\prime } = 0 \]

[_quadrature]

8693

\[ {}{\mathrm e} y^{\prime } = 0 \]

[_quadrature]

8694

\[ {}\pi y^{\prime } = 0 \]

[_quadrature]

8695

\[ {}y^{\prime } \sin \left (x \right ) = 0 \]

[_quadrature]

8696

\[ {}f \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8697

\[ {}x y^{\prime } = 1 \]

[_quadrature]

8698

\[ {}x y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

8699

\[ {}\left (x -1\right ) y^{\prime } = 0 \]

[_quadrature]

8700

\[ {}y y^{\prime } = 0 \]

[_quadrature]

8701

\[ {}x y y^{\prime } = 0 \]

[_quadrature]

8702

\[ {}x y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8703

\[ {}\pi y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8704

\[ {}x \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8705

\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

[_quadrature]

8706

\[ {}y {y^{\prime }}^{2} = 0 \]

[_quadrature]

8707

\[ {}{y^{\prime }}^{n} = 0 \]

[_quadrature]

8708

\[ {}x {y^{\prime }}^{n} = 0 \]

[_quadrature]

8709

\[ {}{y^{\prime }}^{2} = x \]

[_quadrature]

8796

\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8798

\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8799

\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

[[_2nd_order, _missing_x]]

9691

\[ {}y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}} = 0 \]

[_quadrature]

9779

\[ {}x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

10064

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

10071

\[ {}{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c = 0 \]

[_quadrature]

10080

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10122

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

10132

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10134

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

10145

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

10158

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10210

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

10213

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10223

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

10226

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

10227

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 x y^{\prime }-x = 0 \]

[_quadrature]

10236

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

10253

\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

[_quadrature]

10254

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

11260

\[ {}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

[[_high_order, _missing_x]]

11521

\[ {}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x]]

11677

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

12552

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12556

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

12591

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

12593

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

12712

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

12713

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]
i.c.

[_quadrature]

12715

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

12716

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

12717

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

12718

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

13380

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

13381

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

13382

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

13383

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

13384

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

13385

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

13386

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

13387

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

13388

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

13537

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

13539

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

[_quadrature]

13549

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

[_quadrature]

13895

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

13997

\[ {}x y^{\prime }-\sin \left (x \right ) = 0 \]

[_quadrature]

14008

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

14027

\[ {}y^{\prime } = 1-x \]

[_quadrature]

14028

\[ {}y^{\prime } = x -1 \]

[_quadrature]

14064

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

14073

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

14074

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

14075

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

14076

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

14077

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14078

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14079

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14080

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14081

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14082

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14111

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14312

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

14313

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

14330

\[ {}y^{\prime } = -t^{2}+2 \]

[_quadrature]

14334

\[ {}y^{\prime } = t^{2}-2 \]

[_quadrature]

14336

\[ {}\theta ^{\prime } = 2 \]

[_quadrature]

14442

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

14655

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

14658

\[ {}x y^{\prime } = \arcsin \left (x^{2}\right ) \]

[_quadrature]

14665

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

14666

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

14667

\[ {}x y^{\prime }+\sqrt {x} = 2 \]

[_quadrature]

14668

\[ {}\sqrt {4+x}\, y^{\prime } = 1 \]

[_quadrature]

14669

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

14670

\[ {}y^{\prime } = \cos \left (x \right ) x \]

[_quadrature]

14671

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14672

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14673

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

14677

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

14678

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

14679

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

14680

\[ {}x y^{\prime }+2 = \sqrt {x} \]
i.c.

[_quadrature]

14681

\[ {}\cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

14682

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

14684

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

14685

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14686

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14687

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

14688

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14689

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14690

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14691

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

14692

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

14693

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

14694

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

14695

\[ {}x y^{\prime } = \sin \left (x \right ) \]
i.c.

[_quadrature]

14696

\[ {}x y^{\prime } = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

14697

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]
i.c.

[_quadrature]

14698

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[_quadrature]

14699

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]
i.c.

[_quadrature]

14714

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

14765

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

14839

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

14850

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

14855

\[ {}\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

14866

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

14876

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

15464

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

15483

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

15484

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

15485

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

15486

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

15487

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

15488

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

15489

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

15490

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15491

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

15492

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

15493

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

15494

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

15495

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

15504

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

15505

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

15506

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

15507

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

15514

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

15528

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

15529

\[ {}y^{\prime } = \sin \left (x \right ) x^{2} \]

[_quadrature]

15530

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15531

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

15535

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

15536

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

15547

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

15610

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

15611

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

15613

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

15619

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

15620

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15709

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

15751

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

16354

\[ {}y^{\prime } = x +1 \]

[_quadrature]

16366

\[ {}y^{\prime } = 1-x \]

[_quadrature]

16370

\[ {}y^{\prime } = 1 \]

[_quadrature]

16371

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

16398

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

16399

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

16400

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

16401

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

16402

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

16403

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

16404

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

16493

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

[_quadrature]

16495

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

[_quadrature]

16497

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

16499

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16505

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

[_quadrature]

16508

\[ {}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

[_quadrature]

16509

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

[_quadrature]

16511

\[ {}x = \sin \left (y^{\prime }\right )+y^{\prime } \]

[_quadrature]

16552

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

[_quadrature]

16586

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]

17091

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

[_quadrature]

17128

\[ {}x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

[_quadrature]

17567

\[ {}y^{\prime } = 2 \]

[_quadrature]

17568

\[ {}y^{\prime } = -x^{3} \]

[_quadrature]

17612

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

17614

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17616

\[ {}x {y^{\prime }}^{3} = 1+y^{\prime } \]

[_quadrature]

17617

\[ {}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

[_quadrature]

17732

\[ {}y^{\prime } = 2 x \]

[_quadrature]

17746

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

17747

\[ {}x y^{\prime } = 1 \]

[_quadrature]

17748

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

17749

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

17750

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

17751

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

17752

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

17753

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

17759

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

17764

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

17765

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

17766

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

17767

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

17768

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

17769

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

17771

\[ {}x y^{\prime } = 2 x^{2}+1 \]
i.c.

[_quadrature]

17774

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[_quadrature]

18164

\[ {}x^{\prime } = 3 t^{2}+4 t \]
i.c.

[_quadrature]

18165

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]
i.c.

[_quadrature]

18166

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

18167

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]
i.c.

[_quadrature]

18168

\[ {}x^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

18169

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]
i.c.

[_quadrature]

18237

\[ {}y^{\prime } = {\mathrm e}^{z -y^{\prime }} \]

[_quadrature]

18239

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

18242

\[ {}\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k} \]

[_quadrature]

18249

\[ {}\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2} \]

[_quadrature]

18477

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18478

\[ {}{y^{\prime }}^{2}-a \,x^{3} = 0 \]

[_quadrature]

18479

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

18480

\[ {}{y^{\prime }}^{3} = a \,x^{4} \]

[_quadrature]

18482

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

18488

\[ {}x \left (1+{y^{\prime }}^{2}\right ) = 1 \]

[_quadrature]

18489

\[ {}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

18503

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

18513

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18514

\[ {}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

[_quadrature]

18517

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

18530

\[ {}x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

[_quadrature]

18538

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

18539

\[ {}4 x \left (x -1\right ) \left (-2+x \right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]