# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime } = \sqrt {x +y+1}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (4 x +y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y+1}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (4 x +y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x +2 y+1}
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (-y+9 x \right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (4 x +y+2\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (x +y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (x +y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (3+x -4 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (1+4 x +9 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (x +y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (x +y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \sqrt {1+6 x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (a +b x +y\right )^{4}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (a +b x +c y\right )^{6}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x +y\right )^{4}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }-\left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }-1 = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{\prime } = \left (4 t -x\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x^{\prime } = \left (t +x\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}1-\left (x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x +y-4\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (x +y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (x +y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|