2.3.3 first order ode homogA

Table 2.381: first order ode homogA

#

ODE

CAS classification

Solved?

77

\[ {}x y^{\prime }+2 y = 3 x \]
i.c.

[_linear]

80

\[ {}3 x y^{\prime }+y = 12 x \]

[_linear]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

107

\[ {}x y^{\prime } = y+2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

108

\[ {}y^{\prime } \left (x -y\right ) = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

112

\[ {}x^{2} y^{\prime } = x y+x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

113

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

116

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

118

\[ {}y y^{\prime }+x = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

181

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

186

\[ {}2 x y+x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

189

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

190

\[ {}6 x y^{3}+2 y^{4}+\left (9 y^{2} x^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {3 y+x}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

708

\[ {}x y^{\prime }+2 y = 3 x \]
i.c.

[_linear]

711

\[ {}3 x y^{\prime }+y = 12 x \]

[_linear]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

731

\[ {}x y^{\prime } = y+2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

732

\[ {}y^{\prime } \left (x -y\right ) = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

736

\[ {}x^{2} y^{\prime } = x y+x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

737

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

740

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

742

\[ {}y y^{\prime }+x = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

773

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

778

\[ {}2 x y+x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

781

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 y^{2} x^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {3 y+x}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1158

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1160

\[ {}y^{\prime } = \frac {4 y-3 x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1161

\[ {}y^{\prime } = -\frac {4 x +3 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1162

\[ {}y^{\prime } = \frac {3 y+x}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1163

\[ {}x^{2}+3 x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1194

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1198

\[ {}y^{\prime } = \frac {-a x +b y}{b x -c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1204

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1205

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1217

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1243

\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1540

\[ {}x y^{\prime }+3 y = 0 \]

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1597

\[ {}y y^{\prime }+x = 0 \]
i.c.

[_separable]

1615

\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1626

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1628

\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1645

\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

1646

\[ {}x^{2} y^{\prime } = y^{2}+x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1648

\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 x y} \]

[[_homogeneous, ‘class A‘]]

1649

\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1652

\[ {}y^{\prime } = \frac {y^{2}-3 x y-5 x^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1660

\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1662

\[ {}x^{2} y^{\prime } = y^{2}+x y-4 x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1663

\[ {}x y y^{\prime } = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1664

\[ {}y^{\prime } = \frac {2 y^{2}-x y+2 x^{2}}{x y+2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1665

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1680

\[ {}6 y^{2} x^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1685

\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1687

\[ {}2 x +y+\left (2 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1692

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

2330

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2332

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2346

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2502

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2844

\[ {}x y^{\prime }+y = 0 \]

[_separable]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2862

\[ {}x y^{\prime }+2 y = 0 \]
i.c.

[_separable]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2873

\[ {}-y+x y^{\prime } = \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2874

\[ {}y^{\prime } = \frac {2 x -y}{4 y+x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2876

\[ {}y y^{\prime }+x = 2 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2877

\[ {}x y^{\prime }-y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2878

\[ {}y^{2}+x^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2880

\[ {}x y^{\prime }+y = 2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2881

\[ {}x +y+y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2882

\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (y^{2}+x y+x^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2883

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2884

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2885

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2887

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2888

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2889

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2890

\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2891

\[ {}y^{\prime } = \frac {y}{x -k \sqrt {y^{2}+x^{2}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2892

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2893

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2914

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2915

\[ {}3 x +y+\left (3 y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2919

\[ {}2 x y-\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2934

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2935

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2964

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2986

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2989

\[ {}x^{2} y^{\prime }+y^{2} = x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3005

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3006

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3014

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3019

\[ {}y+\left (-2 y+3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3021

\[ {}\left (3 x +4 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3026

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

3032

\[ {}y \sqrt {y^{2}+x^{2}}+x y = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

3036

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3041

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3045

\[ {}\left (-2 x^{2}-3 x y\right ) y^{\prime }+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3049

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3050

\[ {}3 x y+\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3056

\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3285

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3288

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3292

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3295

\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3298

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3300

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3301

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3303

\[ {}y {y^{\prime }}^{2} = 3 x y^{\prime }+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3306

\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3308

\[ {}y+2 x y^{\prime } = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3311

\[ {}x +2 y y^{\prime } = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3312

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3314

\[ {}\left (1+{y^{\prime }}^{2}\right ) y = 2 x y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3315

\[ {}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3317

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3318

\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3461

\[ {}2 x y^{\prime }+3 x +y = 0 \]

[_linear]

3467

\[ {}\left (y-x \right ) y^{\prime }+2 x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3476

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3477

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3544

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3545

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3546

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3549

\[ {}x \left (x^{2}-y^{2}\right )-x \left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3550

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3551

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3552

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3553

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3554

\[ {}y y^{\prime } = \sqrt {y^{2}+x^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3555

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3556

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3557

\[ {}y^{\prime } = \frac {x \sqrt {y^{2}+x^{2}}+y^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3562

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3636

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3637

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3638

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3639

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3643

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3644

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3645

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3646

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3647

\[ {}y y^{\prime } = \sqrt {y^{2}+x^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3648

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3649

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3650

\[ {}y^{\prime } = \frac {x \sqrt {y^{2}+x^{2}}+y^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3651

\[ {}y^{\prime } = \frac {4 y-2 x}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3652

\[ {}y^{\prime } = \frac {2 x -y}{4 y+x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3653

\[ {}y^{\prime } = \frac {y-\sqrt {y^{2}+x^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3655

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3656

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3682

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4098

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4103

\[ {}y^{\prime } = \frac {y^{2}+x^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4112

\[ {}y^{\prime } = \frac {2 x -y}{2 x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4190

\[ {}y y^{\prime } = x \]

[_separable]

4196

\[ {}x y^{\prime }+y = x \]

[_linear]

4223

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

4240

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4241

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4242

\[ {}x^{2} y^{\prime }-2 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4243

\[ {}x^{2} y^{\prime } = 3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4244

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4254

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

4261

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4267

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4277

\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4281

\[ {}\left (x y-x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4290

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4295

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

4300

\[ {}\frac {x}{y^{2}+x^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{y^{2}+x^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4314

\[ {}y^{\prime }+\frac {x}{y}+2 = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4315

\[ {}-y+x y^{\prime } = x \cot \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4316

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4317

\[ {}x y^{\prime } = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4318

\[ {}x y+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4319

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4320

\[ {}x^{2}-x y+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4333

\[ {}2 x y+\left (x^{2}+2 x y+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4347

\[ {}x -\sqrt {y^{2}+x^{2}}+\left (y-\sqrt {y^{2}+x^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4386

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4399

\[ {}x y^{\prime } = y-{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4401

\[ {}2 \sqrt {x y}-y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4402

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4405

\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4413

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4422

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4441

\[ {}x +\sin \left (\frac {y}{x}\right )^{2} \left (y-x y^{\prime }\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4743

\[ {}x y^{\prime }+x +y = 0 \]

[_linear]

4752

\[ {}x y^{\prime } = a y \]

[_separable]

4754

\[ {}x y^{\prime } = a x +b y \]

[_linear]

4798

\[ {}x y^{\prime } = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4800

\[ {}x y^{\prime }+x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4801

\[ {}x y^{\prime } = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4805

\[ {}x y^{\prime }-y+x \sec \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4806

\[ {}x y^{\prime } = y+x \sec \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4808

\[ {}x y^{\prime } = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4811

\[ {}x y^{\prime } = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4813

\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4814

\[ {}x y^{\prime } = x +y+{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4816

\[ {}x y^{\prime } = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4818

\[ {}x y^{\prime } = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4857

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4860

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4861

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4862

\[ {}x^{2} y^{\prime }+x^{2} a +b x y+c y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4938

\[ {}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4951

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4965

\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4966

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+y^{2} a \right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5015

\[ {}y y^{\prime }+x = 0 \]

[_separable]

5018

\[ {}y y^{\prime }+a x +b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5032

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5033

\[ {}y^{\prime } \left (x -y\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5034

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5035

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5039

\[ {}y^{\prime } \left (x -y\right ) = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5044

\[ {}\left (2 x +y\right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5051

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5060

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5061

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5062

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5081

\[ {}\left (4 y+x \right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5088

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5097

\[ {}\left (a x +b y\right ) y^{\prime }+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5098

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5099

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5100

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5103

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5106

\[ {}x y y^{\prime } = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5107

\[ {}x y y^{\prime }+2 x^{2}-2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5111

\[ {}x y y^{\prime }+x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5112

\[ {}x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5122

\[ {}x \left (x +y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5123

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5124

\[ {}x \left (x +y\right ) y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5125

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5126

\[ {}x \left (x +y\right ) y^{\prime }-y \left (x +y\right )+x \sqrt {x^{2}-y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5128

\[ {}x \left (2 x +y\right ) y^{\prime } = x^{2}+x y-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5129

\[ {}x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5138

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5139

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5143

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5144

\[ {}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5145

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5150

\[ {}x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5151

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5154

\[ {}a x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5155

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5157

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5173

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5176

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5181

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 y^{2} x^{2}-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5192

\[ {}x y+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5193

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5194

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5195

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5196

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5201

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5210

\[ {}\left (x^{2}+2 x y-y^{2}\right ) y^{\prime }+x^{2}-2 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5211

\[ {}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 x y+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5213

\[ {}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5214

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5219

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5221

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5225

\[ {}\left (x^{2}+y^{2} a \right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5226

\[ {}\left (x^{2}+x y+y^{2} a \right ) y^{\prime } = x^{2} a +x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5227

\[ {}\left (x^{2} a +2 x y-y^{2} a \right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5228

\[ {}\left (x^{2} a +2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5234

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5237

\[ {}x \left (x^{2}-x y+y^{2}\right ) y^{\prime }+\left (y^{2}+x y+x^{2}\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5238

\[ {}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5239

\[ {}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5240

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5241

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5242

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5243

\[ {}x \left (x^{2}+a x y+2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5251

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5267

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5268

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5272

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5274

\[ {}2 y^{3} y^{\prime } = x^{3}-x y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5276

\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5277

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5279

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5280

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5283

\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5284

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5285

\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5286

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5301

\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5315

\[ {}y^{\prime } \sqrt {x y}+x -y = \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5316

\[ {}\left (x -2 \sqrt {x y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5319

\[ {}\left (x -\sqrt {y^{2}+x^{2}}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5321

\[ {}x \left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime }+y \sqrt {y^{2}+x^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5322

\[ {}x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5328

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5428

\[ {}x {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5429

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5434

\[ {}x {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5438

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5440

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5445

\[ {}x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5448

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5449

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5453

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5455

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

5461

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5465

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5472

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5473

\[ {}x^{2} {y^{\prime }}^{2}+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5474

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5482

\[ {}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5485

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5487

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5489

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5491

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x +y\right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5492

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5504

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (-a +1\right ) x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5505

\[ {}\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5520

\[ {}y {y^{\prime }}^{2} = a^{2} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5522

\[ {}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5523

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5524

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5527

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

5528

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5530

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5532

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5539

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5540

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5541

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5544

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

[_separable]

5545

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5546

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-2 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5553

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

[_separable]

5555

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5561

\[ {}\left (\left (-a +1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5562

\[ {}\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5563

\[ {}\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5564

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5565

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5568

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5569

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5570

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5573

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5579

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (y^{2}+x^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5635

\[ {}y {y^{\prime }}^{3}-3 x y^{\prime }+3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5637

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5669

\[ {}\sqrt {\left (x^{2} a +y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )}-y y^{\prime }-a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5689

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5694

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5706

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5709

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5734

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5735

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5736

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5753

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5763

\[ {}y = x y^{\prime }+x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5769

\[ {}y-2 x y^{\prime } = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5771

\[ {}2 x y+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5772

\[ {}\left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5773

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5774

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5775

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5776

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5780

\[ {}{\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5781

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5782

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5783

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5865

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5874

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5888

\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5893

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5894

\[ {}\left (x y-x^{2}\right ) y^{\prime }+y^{2}-3 x y-2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5896

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5906

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5907

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5908

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5910

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5912

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6027

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6125

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6126

\[ {}y y^{\prime } = -x +\sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6127

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6128

\[ {}y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6130

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6224

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

6425

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6436

\[ {}\left (2 y-x \right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6437

\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6438

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6439

\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6440

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6458

\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6462

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6465

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6468

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6469

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6570

\[ {}x y^{\prime } = 2 y \]

[_separable]

6571

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6573

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6580

\[ {}4 y+x y^{\prime } = 0 \]

[_separable]

6582

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6585

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6587

\[ {}y \sqrt {y^{2}+x^{2}}-x \left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

6591

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6595

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6598

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6600

\[ {}x y^{\prime }+2 y = 0 \]
i.c.

[_separable]

6601

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6616

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6617

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6618

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6667

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6669

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6671

\[ {}8 y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6676

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6681

\[ {}y {y^{\prime }}^{2}-x y^{\prime }+3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6684

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6685

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6691

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (y y^{\prime }+x \right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7074

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7079

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7093

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7096

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7097

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7098

\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7099

\[ {}x y^{\prime } = y-{\mathrm e}^{\frac {y}{x}} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7100

\[ {}-y+x y^{\prime } = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7101

\[ {}x y^{\prime } = y \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7102

\[ {}y+\sqrt {x y}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7104

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7105

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7106

\[ {}-y+x y^{\prime } = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7107

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7108

\[ {}y^{2}+x y+x^{2} = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7109

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7110

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7111

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7112

\[ {}x y^{\prime } = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7113

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7114

\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7116

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

7117

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

7119

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7120

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

7121

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7122

\[ {}x y^{\prime } = x +\frac {y}{2} \]
i.c.

[_linear]

7153

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7181

\[ {}x y^{\prime }-2 \sqrt {x y} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

7185

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7186

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7231

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

7236

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7237

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7240

\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7408

\[ {}y y^{\prime } = x \]

[_separable]

7415

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7416

\[ {}y^{\prime } = \frac {y^{2}}{x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7417

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7418

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7450

\[ {}x y^{\prime } = 2 y \]

[_separable]

7457

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7458

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7460

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7483

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7530

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

7547

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7548

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7549

\[ {}x^{2} y^{\prime } = 3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

[[_homogeneous, ‘class A‘], _dAlembert]

7550

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7551

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7552

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7553

\[ {}x y^{\prime } = 2 x -6 y \]

[_linear]

7554

\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7555

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7556

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7565

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7566

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7567

\[ {}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7568

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7593

\[ {}x y^{\prime }+y = x \]

[_linear]

7597

\[ {}y^{\prime } = \frac {y^{2}+x^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7598

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7599

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

7605

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7606

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8111

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

8112

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8113

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

8119

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8120

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8122

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 y^{\prime } \left (x -y\right )+2 x -5 y = 0 \]

[_quadrature]

8123

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8125

\[ {}\left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2} = 4 y^{2} x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8126

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+\left (y-x \right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8127

\[ {}x y \left (y^{2}+x^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8130

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8146

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8210

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8215

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8226

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

8229

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

8230

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8377

\[ {}y^{\prime } = \frac {2 x -y}{4 y+x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8400

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

8401

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

8410

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8418

\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

8427

\[ {}y y^{\prime }-y = x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8432

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8562

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8711

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9803

\[ {}x y^{\prime }+a \sqrt {y^{2}+x^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9806

\[ {}x y^{\prime }-{\mathrm e}^{\frac {y}{x}} x -y-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9812

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9813

\[ {}x y^{\prime }+x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9814

\[ {}x y^{\prime }+x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9825

\[ {}x^{2} y^{\prime }+y^{2}+x y+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9826

\[ {}x^{2} y^{\prime }-y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9827

\[ {}x^{2} y^{\prime }-y^{2}-x y-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9856

\[ {}3 x^{2} y^{\prime }-7 y^{2}-3 x y-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9893

\[ {}y y^{\prime }+a y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9900

\[ {}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9912

\[ {}\left (2 y-x \right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9921

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9928

\[ {}\left (x y-x^{2}\right ) y^{\prime }+y^{2}-3 x y-2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9930

\[ {}2 x y y^{\prime }-y^{2}+x^{2} a = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9935

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9951

\[ {}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

9960

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9961

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9965

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9970

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9973

\[ {}\left (4 y^{2}+x^{2}\right ) y^{\prime }-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9974

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+y^{2}+6 x y+2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9979

\[ {}\left (y^{2} a +2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9984

\[ {}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9986

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9995

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9997

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

9999

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10000

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10004

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10014

\[ {}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10015

\[ {}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10026

\[ {}\left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10027

\[ {}\left (y \sqrt {y^{2}+x^{2}}+\left (y^{2}-x^{2}\right ) \sin \left (\alpha \right )-2 x y \cos \left (\alpha \right )\right ) y^{\prime }+x \sqrt {y^{2}+x^{2}}+2 x y \sin \left (\alpha \right )+\left (y^{2}-x^{2}\right ) \cos \left (\alpha \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10038

\[ {}x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘]]

10052

\[ {}\left (-y+x y^{\prime }\right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10053

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10095

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10096

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10099

\[ {}x {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10104

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10106

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10107

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10109

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10110

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10111

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10112

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10126

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

10128

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

10131

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10140

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10141

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10151

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10152

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10153

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10154

\[ {}y {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10155

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10156

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10158

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10159

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10162

\[ {}4 y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10168

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

10170

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10171

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y y^{\prime }-y^{2}+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10181

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10182

\[ {}\left (\left (-a +1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10184

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10186

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10192

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

10203

\[ {}\left (y^{2}+x^{2}\right ) f \left (\frac {x}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

10204

\[ {}\left (y^{2}+x^{2}\right ) f \left (\frac {y}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

10227

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 x y^{\prime }-x = 0 \]

[_quadrature]

10244

\[ {}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10245

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10246

\[ {}y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11682

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

12475

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12476

\[ {}\frac {1}{\sqrt {y^{2}+x^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {y^{2}+x^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12477

\[ {}x y^{\prime }+x +y = 0 \]

[_linear]

12483

\[ {}{\mathrm e}^{\frac {y}{x}} x +y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12484

\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12485

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12486

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12487

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12488

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12506

\[ {}y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0 \]

[_separable]

12508

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12510

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12511

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12514

\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12518

\[ {}y^{2}-x^{2}+2 m y x +\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12521

\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12529

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12532

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12545

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12548

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12551

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12553

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12559

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12560

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12564

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12565

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12566

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12573

\[ {}\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12575

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12580

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12589

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12701

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12702

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12707

\[ {}2 t x^{\prime } = x \]

[_separable]

12746

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12749

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12776

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12779

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12782

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12786

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12926

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

12948

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12964

\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12974

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12975

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12976

\[ {}x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12977

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12978

\[ {}x^{3}+y^{2} \sqrt {y^{2}+x^{2}}-x y \sqrt {y^{2}+x^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12979

\[ {}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12983

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12984

\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12985

\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12986

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12987

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12988

\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12989

\[ {}2 x^{2}+2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13031

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13034

\[ {}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

13037

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13040

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13041

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13046

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13050

\[ {}x^{2} y^{\prime }+x y = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13401

\[ {}x y^{\prime } = k y \]

[_separable]

13423

\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

13424

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {x^{2}+t^{2}}}{x t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13533

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13534

\[ {}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

13536

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13553

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13565

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13571

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13832

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13851

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13852

\[ {}x y^{\prime }+x +y = 0 \]

[_linear]

13853

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13855

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13856

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13858

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13859

\[ {}x \cos \left (\frac {y}{x}\right ) \left (x y^{\prime }+y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

13863

\[ {}\frac {y-x y^{\prime }}{\sqrt {y^{2}+x^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

13864

\[ {}\frac {y y^{\prime }+x}{\sqrt {y^{2}+x^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

13866

\[ {}y y^{\prime } = -x +\sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13887

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

13888

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13889

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13894

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13900

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

13952

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13956

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

13994

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

14002

\[ {}2 x y^{\prime }-y = 0 \]

[_separable]

14039

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14047

\[ {}y^{\prime } = \frac {2 x -y}{3 y+x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14050

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14054

\[ {}y^{\prime } = \frac {y}{y-x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14088

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

14096

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14105

\[ {}x -y y^{\prime } = 0 \]

[_separable]

14140

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14141

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14142

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14143

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14145

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14285

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

14418

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

14426

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

14659

\[ {}y y^{\prime } = 2 x \]

[_separable]

14721

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14727

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14792

\[ {}x^{2} y^{\prime }-x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14793

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14794

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14795

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14797

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14800

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14805

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14806

\[ {}\left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14810

\[ {}-y+x y^{\prime } = \sqrt {x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14818

\[ {}2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14822

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14840

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+y^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14844

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14856

\[ {}x y y^{\prime } = 2 y^{2}+2 x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14858

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14859

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14865

\[ {}x y y^{\prime } = y^{2}+x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15465

\[ {}2 x -y-y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15478

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

15480

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

15509

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15526

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15568

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15615

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15647

\[ {}t y^{\prime }+y = t \]

[_linear]

15701

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15702

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15704

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15708

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15711

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15712

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15715

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15718

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15727

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15728

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15729

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15741

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15744

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15752

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15753

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15761

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15764

\[ {}\cos \left (\frac {t}{y+t}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15765

\[ {}y \ln \left (\frac {t}{y}\right )+\frac {t^{2} y^{\prime }}{y+t} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15767

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15770

\[ {}2 t +\left (y-3 t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15771

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

15772

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15773

\[ {}t^{2}+t y+y^{2}-t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15774

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15775

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15777

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15778

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15780

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15781

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15782

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15783

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15784

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15785

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

15788

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15790

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15791

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15792

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15793

\[ {}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15810

\[ {}t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15811

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15812

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15822

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15823

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15825

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15826

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15827

\[ {}x^{\prime } = \frac {5 t x}{x^{2}+t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16341

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

16365

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16369

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

16378

\[ {}x y^{\prime } = 2 x -y \]
i.c.

[_linear]

16413

\[ {}x y^{\prime } = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

16415

\[ {}x y^{\prime } = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

16416

\[ {}x^{2} y^{\prime } = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

16417

\[ {}x y^{\prime } = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16418

\[ {}2 x^{2} y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

16419

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16420

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16453

\[ {}x y^{\prime }+y = 2 x \]

[_linear]

16457

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16470

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16480

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16482

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16496

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

16538

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

16541

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16546

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16547

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16554

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16560

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16561

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17054

\[ {}y^{\prime } = \frac {t -y}{2 t +5 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17062

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

17072

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17074

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

17075

\[ {}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17076

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17082

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17083

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17096

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17099

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y} = 1 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17102

\[ {}x y y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17103

\[ {}y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17104

\[ {}x y^{\prime }-4 \sqrt {y^{2}-x^{2}} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

17105

\[ {}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 y^{2} x^{2}-2 x^{3} y}{2 y^{2} x^{2}-2 x^{3} y-2 x^{4}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17106

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17107

\[ {}x y y^{\prime } = y^{2}+x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17119

\[ {}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17125

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

[_separable]

17129

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17130

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17573

\[ {}y^{\prime } = \frac {2 x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17574

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17575

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17576

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17577

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

17602

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17612

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

17615

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17624

\[ {}y = \frac {k \left (y y^{\prime }+x \right )}{\sqrt {1+{y^{\prime }}^{2}}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17638

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17639

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17642

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17733

\[ {}x y^{\prime } = 2 y \]

[_separable]

17740

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17741

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17743

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17755

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

17780

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17781

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17782

\[ {}x^{2} y^{\prime } = 3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

[[_homogeneous, ‘class A‘], _dAlembert]

17783

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

17784

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17785

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17786

\[ {}x y^{\prime } = 2 x +3 y \]

[_linear]

17787

\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17788

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17789

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17803

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

17816

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17819

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17820

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17834

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17838

\[ {}x y^{\prime }+y = \sqrt {x y}\, y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17878

\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

17883

\[ {}x y y^{\prime } = y^{2}+x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17894

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17900

\[ {}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17902

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

17903

\[ {}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17907

\[ {}\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0 \]

[_linear]

17910

\[ {}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17916

\[ {}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17917

\[ {}x^{2} y^{\prime } = y^{2}+x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

17922

\[ {}x^{2} y^{\prime }-y^{2} = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18178

\[ {}x^{\prime } = \cos \left (\frac {x}{t}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

18179

\[ {}\left (t^{2}-x^{2}\right ) x^{\prime } = x t \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18215

\[ {}v^{\prime }+\frac {2 v}{u} = 3 \]

[_linear]

18221

\[ {}y^{2} = x \left (y-x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18222

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18225

\[ {}y y^{\prime }+x = m y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18226

\[ {}\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18251

\[ {}y^{\prime } = 1+\frac {2 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18279

\[ {}y-2 x y^{\prime }-y {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18316

\[ {}x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18317

\[ {}5 x y y^{\prime }-y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18318

\[ {}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18319

\[ {}\left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18320

\[ {}5 x y y^{\prime }-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18322

\[ {}3 x^{2} y^{\prime }+2 x^{2}-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

18407

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18408

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18409

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18410

\[ {}\left (4 y+3 x \right ) y^{\prime }+y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18413

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18423

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18429

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18443

\[ {}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18451

\[ {}x y^{\prime }+\frac {y^{2}}{x} = y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18454

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18457

\[ {}y y^{\prime }+x = m \left (-y+x y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18465

\[ {}y y^{\prime } = a x \]

[_separable]

18467

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18469

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18474

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18479

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 {y^{\prime }}^{2} \left (x +y\right )+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

18481

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

18486

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18491

\[ {}y^{2}+x y y^{\prime }-x^{2} {y^{\prime }}^{2} = 0 \]

[_separable]

18492

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18499

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18501

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{3} y^{\prime }+x^{3} \]

[_separable]

18507

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18508

\[ {}\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18509

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18513

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18515

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

18526

\[ {}y^{\prime } \sqrt {x} = \sqrt {y} \]

[_separable]

18533

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]