2.2.177 Problems 17601 to 17700

Table 2.355: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17601

\[ {}\frac {x +y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y-x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

2.855

17602

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.142

17603

\[ {}\frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

37.873

17604

\[ {}\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.845

17605

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.785

17606

\[ {}\left (y^{2} x^{2}-1\right ) y^{\prime }+2 x y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.394

17607

\[ {}a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.349

17608

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

1.392

17609

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

1.375

17610

\[ {}x y^{\prime }+y-x y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

2.120

17611

\[ {}2 x^{3}+3 x^{2} y+y^{2}-y^{3}+\left (2 y^{3}+3 x y^{2}+x^{2}-x^{3}\right ) y^{\prime } = 0 \]

[_rational]

2.673

17612

\[ {}{y^{\prime }}^{2} y+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

3.211

17613

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{4}+y^{2} x^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.345

17614

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+y^{2} x^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

2.133

17615

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.174

17616

\[ {}x {y^{\prime }}^{3} = 1+y^{\prime } \]

[_quadrature]

0.514

17617

\[ {}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

[_quadrature]

0.503

17618

\[ {}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0 \]

[_quadrature]

19.495

17619

\[ {}y = {\mathrm e}^{y^{\prime }} {y^{\prime }}^{2} \]

[_quadrature]

1.638

17620

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

3.259

17621

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \alpha \]

[_quadrature]

0.497

17622

\[ {}{y^{\prime }}^{4} = 4 y \left (x y^{\prime }-2 y\right )^{2} \]

[[_homogeneous, ‘class G‘]]

0.735

17623

\[ {}y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

10.149

17624

\[ {}y = \frac {k \left (x +y y^{\prime }\right )}{\sqrt {1+{y^{\prime }}^{2}}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.771

17625

\[ {}x = y y^{\prime }+a {y^{\prime }}^{2} \]

unknown

78.141

17626

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{3} \]

unknown

2.853

17627

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.382

17628

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

106.559

17629

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.583

17630

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.464

17631

\[ {}y^{\prime } = \sqrt {y-x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.040

17632

\[ {}y^{\prime } = \sqrt {y-x}+1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.274

17633

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

1.314

17634

\[ {}y^{\prime } = y \ln \left (y\right ) \]

[_quadrature]

2.397

17635

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

[_quadrature]

7.073

17636

\[ {}y^{\prime } = -x +\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.060

17637

\[ {}y^{\prime } = -x -\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.019

17638

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.596

17639

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.319

17640

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

3.365

17641

\[ {}{y^{\prime }}^{4} = 4 y \left (x y^{\prime }-2 y\right )^{2} \]

[[_homogeneous, ‘class G‘]]

0.747

17642

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.685

17643

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2} \]

[‘y=_G(x,y’)‘]

4.791

17644

\[ {}y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

10.826

17645

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.563

17646

\[ {}{y^{\prime \prime \prime }}^{2}+x^{2} = 1 \]

[[_3rd_order, _quadrature]]

0.713

17647

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {y}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.611

17648

\[ {}a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

19.360

17649

\[ {}y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.386

17650

\[ {}2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.185

17651

\[ {}y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

0.545

17652

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x]]

1.695

17653

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.250

17654

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.800

17655

\[ {}n \,x^{3} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.168

17656

\[ {}y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

0.159

17657

\[ {}x^{2} y^{2} y^{\prime \prime }-3 x y^{2} y^{\prime }+4 y^{3}+x^{6} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.152

17658

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

3.167

17659

\[ {}x \left (x^{2} y^{\prime }+2 x y\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 x y y^{\prime }+4 y^{2}-1 = 0 \]

[NONE]

0.146

17660

\[ {}x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.836

17661

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.814

17662

\[ {}a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.154

17663

\[ {}x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 x y y^{\prime } = 4 y^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.196

17664

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.487

17665

\[ {}5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.676

17666

\[ {}40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.087

17667

\[ {}{y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.656

17668

\[ {}{y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.937

17669

\[ {}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.127

17670

\[ {}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.128

17671

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.943

17672

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

1.632

17673

\[ {}y^{\prime \prime } \sin \left (x \right )^{2} = 2 y \]

[[_2nd_order, _with_linear_symmetries]]

0.706

17674

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.129

17675

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.050

17676

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.277

17677

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.769

17678

\[ {}y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

[[_2nd_order, _with_linear_symmetries]]

1.850

17679

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = x^{4}+12 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.056

17680

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.066

17681

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.853

17682

\[ {}y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.265

17683

\[ {}y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.124

17684

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.165

17685

\[ {}y^{\prime \prime } \sin \left (x \right )^{2}+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.017

17686

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.070

17687

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.068

17688

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.081

17689

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.074

17690

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.856

17691

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.097

17692

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.097

17693

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.172

17694

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.135

17695

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.156

17696

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.852

17697

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

32.729

17698

\[ {}y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.742

17699

\[ {}y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.303

17700

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.860