2.2.176 Problems 17501 to 17600

Table 2.353: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17501

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{2}-x_{2}-\frac {3 x_{3}}{2} \\ x_{2}^{\prime }=\frac {3 x_{1}}{2}-2 x_{2}-\frac {3 x_{3}}{2} \\ x_{3}^{\prime }=-2 x_{1}+2 x_{2}+x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.527

17502

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+5 x_{2}+3 x_{3}-5 x_{4} \\ x_{2}^{\prime }=2 x_{1}+3 x_{2}+2 x_{3}-4 x_{4} \\ x_{3}^{\prime }=-x_{2}-2 x_{3}+x_{4} \\ x_{4}^{\prime }=2 x_{1}+4 x_{2}+2 x_{3}-5 x_{4} \end {array}\right ] \]

system_of_ODEs

0.706

17503

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-5 x_{1}+x_{2}-4 x_{3}-x_{4} \\ x_{2}^{\prime }=-3 x_{2} \\ x_{3}^{\prime }=x_{1}-x_{2}+x_{4} \\ x_{4}^{\prime }=2 x_{1}-x_{2}+2 x_{3}-2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.724

17504

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+2 x_{2}-x_{4} \\ x_{2}^{\prime }=2 x_{1}-x_{2}+2 x_{4} \\ x_{3}^{\prime }=3 x_{3} \\ x_{4}^{\prime }=-x_{1}+2 x_{2}+2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.513

17505

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+8 x_{2}+5 x_{3}+3 x_{4} \\ x_{2}^{\prime }=2 x_{1}+16 x_{2}+10 x_{3}+6 x_{4} \\ x_{3}^{\prime }=5 x_{1}-14 x_{2}-11 x_{3}-3 x_{4} \\ x_{4}^{\prime }=-x_{1}-8 x_{2}-5 x_{3}-3 x_{4} \end {array}\right ] \]

system_of_ODEs

0.865

17506

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+2 x_{2}-2 x_{4} \\ x_{2}^{\prime }=-x_{1}+3 x_{2}-x_{3}+x_{4} \\ x_{3}^{\prime }=-2 x_{1}-2 x_{2}-4 x_{3}+2 x_{4} \\ x_{4}^{\prime }=-7 x_{1}+x_{2}-7 x_{3}+3 x_{4} \end {array}\right ] \]

system_of_ODEs

0.852

17507

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-5 x_{1}-2 x_{2}-x_{3}+2 x_{4}+3 x_{5} \\ x_{2}^{\prime }=-3 x_{2} \\ x_{3}^{\prime }=x_{1}-x_{3}-x_{5} \\ x_{4}^{\prime }=2 x_{1}+x_{2}-4 x_{4}-2 x_{5} \\ x_{5}^{\prime }=-3 x_{1}-2 x_{2}-x_{3}+2 x_{4}+x_{5} \end {array}\right ] \]

system_of_ODEs

1.079

17508

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{2}-2 x_{3}+3 x_{4}+2 x_{5} \\ x_{2}^{\prime }=8 x_{1}+6 x_{2}+4 x_{3}-8 x_{4}-16 x_{5} \\ x_{3}^{\prime }=-8 x_{1}-8 x_{2}-6 x_{3}+8 x_{4}-16 x_{5} \\ x_{4}^{\prime }=8 x_{1}+7 x_{2}+4 x_{3}-9 x_{4}-16 x_{5} \\ x_{5}^{\prime }=-3 x_{1}-5 x_{2}-3 x_{3}+5 x_{4}+7 x_{5} \end {array}\right ] \]

system_of_ODEs

3.681

17509

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+2 x_{2}+x_{3} \\ x_{2}^{\prime }=-2 x_{1}+2 x_{2}+2 x_{3} \\ x_{3}^{\prime }=2 x_{1}-3 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.632

17510

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}+x_{2}+3 x_{3} \\ x_{3}^{\prime }=3 x_{1}-4 x_{2}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.666

17511

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}-x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}-2 x_{2}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.628

17512

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }=-6 x_{1}-3 x_{3} \\ x_{3}^{\prime }=\frac {8 x_{2}}{3}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.684

17513

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}+6 x_{2}-6 x_{3} \\ x_{2}^{\prime }=-9 x_{1}+5 x_{2}-9 x_{3} \\ x_{3}^{\prime }=-x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.646

17514

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {4 x_{1}}{3}+\frac {4 x_{2}}{3}-\frac {11 x_{3}}{3} \\ x_{2}^{\prime }=-\frac {16 x_{1}}{3}-\frac {x_{2}}{3}+\frac {14 x_{3}}{3} \\ x_{3}^{\prime }=3 x_{1}-2 x_{2}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.682

17515

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-8 x_{1}-5 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.554

17516

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.533

17517

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {3 x_{1}}{4}+\frac {29 x_{2}}{4}-\frac {11 x_{3}}{2} \\ x_{2}^{\prime }=-\frac {3 x_{1}}{4}+\frac {3 x_{2}}{4}-\frac {5 x_{3}}{2} \\ x_{3}^{\prime }=\frac {5 x_{1}}{4}+\frac {11 x_{2}}{4}-\frac {5 x_{3}}{2} \end {array}\right ] \]

system_of_ODEs

0.674

17518

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}-x_{2}+4 x_{3}+2 x_{4} \\ x_{2}^{\prime }=-19 x_{1}-6 x_{2}+6 x_{3}+16 x_{4} \\ x_{3}^{\prime }=-9 x_{1}-x_{2}+x_{3}+6 x_{4} \\ x_{4}^{\prime }=-5 x_{1}-3 x_{2}+6 x_{3}+5 x_{4} \end {array}\right ] \]

system_of_ODEs

4.119

17519

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+6 x_{2}+2 x_{3}-2 x_{4} \\ x_{2}^{\prime }=2 x_{1}-3 x_{2}-6 x_{3}+2 x_{4} \\ x_{3}^{\prime }=-4 x_{1}+8 x_{2}+3 x_{3}-4 x_{4} \\ x_{4}^{\prime }=2 x_{1}-2 x_{2}-6 x_{3}+x_{4} \end {array}\right ] \]

system_of_ODEs

1.123

17520

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-4 x_{2}+5 x_{3}+9 x_{4} \\ x_{2}^{\prime }=-2 x_{1}-5 x_{2}+4 x_{3}+12 x_{4} \\ x_{3}^{\prime }=-2 x_{1}-x_{3}+2 x_{4} \\ x_{4}^{\prime }=-2 x_{2}+2 x_{3}+3 x_{4} \end {array}\right ] \]

system_of_ODEs

1.499

17521

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-5 x_{2}+8 x_{3}+14 x_{4} \\ x_{2}^{\prime }=-6 x_{1}-8 x_{2}+11 x_{3}+27 x_{4} \\ x_{3}^{\prime }=-6 x_{1}-4 x_{2}+7 x_{3}+17 x_{4} \\ x_{4}^{\prime }=-2 x_{2}+2 x_{3}+4 x_{4} \end {array}\right ] \]

system_of_ODEs

2.528

17522

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{2}-2 x_{4} \\ x_{2}^{\prime }=-\frac {x_{1}}{2}+x_{2}-3 x_{3}-\frac {5 x_{4}}{2} \\ x_{3}^{\prime }=3 x_{2}-5 x_{3}-3 x_{4} \\ x_{4}^{\prime }=x_{1}+3 x_{2}-3 x_{4} \end {array}\right ] \]

system_of_ODEs

1.132

17523

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.338

17524

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=\frac {x_{1}}{2}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.330

17525

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.312

17526

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{2}-\frac {x_{2}}{4} \\ x_{2}^{\prime }=x_{1}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.269

17527

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=\frac {x_{1}}{2}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.399

17528

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.392

17529

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.339

17530

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.428

17531

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.327

17532

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{2}+\frac {x_{2}}{2} \\ x_{2}^{\prime }=2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.355

17533

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=-x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.626

17534

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {5 x_{1}}{2}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.313

17535

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-8 x_{1}-5 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.569

17536

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.543

17537

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-9 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.520

17538

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.442

17539

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.223

17540

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.217

17541

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.236

17542

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.218

17543

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-k_{1} x_{1} \\ x_{2}^{\prime }=k_{1} x_{1}-k_{2} x_{2} \\ x_{3}^{\prime }=k_{2} x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.568

17544

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}+t \end {array}\right ] \]

system_of_ODEs

0.505

17545

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.633

17546

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.843

17547

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.555

17548

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=1-x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{2}+t \\ x_{3}^{\prime }=-2 x_{1}-x_{2}+3 x_{3}+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.625

17549

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {x_{3}}{2}+1 \\ x_{2}^{\prime }=-x_{1}-2 x_{2}+x_{3}+t \\ x_{3}^{\prime }=\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {3 x_{3}}{2}+11 \,{\mathrm e}^{-3 t} \end {array}\right ] \]

system_of_ODEs

0.703

17550

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+x_{2}+3 x_{3}+3 t \\ x_{2}^{\prime }=-2 x_{2} \\ x_{3}^{\prime }=-2 x_{1}+x_{2}+x_{3}+3 \cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.799

17551

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}+x_{2}+\frac {x_{3}}{2} \\ x_{2}^{\prime }=x_{1}-x_{2}+x_{3}-\sin \left (t \right ) \\ x_{3}^{\prime }=\frac {x_{1}}{2}+x_{2}-\frac {x_{3}}{2} \end {array}\right ] \]

system_of_ODEs

0.918

17552

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+1 \\ x_{2}^{\prime }=x_{1}-2 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{2}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

230.934

17553

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-9 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.325

17554

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-9 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.271

17555

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-3 x_{1}+2 x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.388

17556

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-3 x_{2}-2 x_{3} \\ x_{2}^{\prime }=8 x_{1}-5 x_{2}-4 x_{3} \\ x_{3}^{\prime }=-4 x_{1}+3 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.477

17557

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}+9 x_{2}-6 x_{3} \\ x_{2}^{\prime }=-8 x_{1}+11 x_{2}-7 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+3 x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.518

17558

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+6 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-2 x_{1}-2 x_{2}-x_{3} \\ x_{3}^{\prime }=-2 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.459

17559

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-8 x_{1}-16 x_{2}-16 x_{3}-17 x_{4} \\ x_{2}^{\prime }=-2 x_{1}-10 x_{2}-8 x_{3}-7 x_{4} \\ x_{3}^{\prime }=-2 x_{1}-2 x_{3}-3 x_{4} \\ x_{4}^{\prime }=6 x_{1}+14 x_{2}+14 x_{3}+14 x_{4} \end {array}\right ] \]

system_of_ODEs

1.307

17560

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}-2 x_{3}+3 x_{4} \\ x_{2}^{\prime }=2 x_{1}-\frac {3 x_{2}}{2}-x_{3}+\frac {7 x_{4}}{2} \\ x_{3}^{\prime }=-x_{1}+\frac {x_{2}}{2}-\frac {3 x_{4}}{2} \\ x_{4}^{\prime }=-2 x_{1}+\frac {3 x_{2}}{2}+3 x_{3}-\frac {7 x_{4}}{2} \end {array}\right ] \]

system_of_ODEs

0.595

17561

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}-7 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.449

17562

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.447

17563

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }=6 x_{1}+4 x_{2}+6 x_{3} \\ x_{3}^{\prime }=-5 x_{1}-2 x_{2}-4 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.495

17564

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2} \\ x_{2}^{\prime }=-14 x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }=15 x_{1}+5 x_{2}-2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.505

17565

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y+x y \\ y^{\prime }=x+4 x y \end {array}\right ] \]

system_of_ODEs

0.050

17566

\[ {}\left [\begin {array}{c} x^{\prime }=1+5 y \\ y^{\prime }=1-6 x^{2} \end {array}\right ] \]

system_of_ODEs

0.050

17567

\[ {}y^{\prime } = 2 \]

[_quadrature]

0.484

17568

\[ {}y^{\prime } = -x^{3} \]

[_quadrature]

0.263

17569

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

1.503

17570

\[ {}x \sqrt {1+y^{2}}+y \sqrt {x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

6.337

17571

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

36.711

17572

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }+\sqrt {1-y^{2}} = 0 \]

[_separable]

16.800

17573

\[ {}y^{\prime } = \frac {2 x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.802

17574

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.046

17575

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.229

17576

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.702

17577

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.631

17578

\[ {}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.537

17579

\[ {}\left (x +2 y+1\right ) y^{\prime } = 2 x +4 y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.457

17580

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (y-1+x \right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

1.773

17581

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.456

17582

\[ {}x y^{\prime }-4 y = x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.473

17583

\[ {}\cos \left (x \right ) y^{\prime } = y \sin \left (x \right )+\cos \left (x \right )^{2} \]

[_linear]

2.212

17584

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

1.391

17585

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

1.146

17586

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.801

17587

\[ {}x y^{\prime }+y = x y^{2} \ln \left (x \right ) \]

[_Bernoulli]

2.087

17588

\[ {}y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y} = 0 \]

[_rational, _Bernoulli]

1.681

17589

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.473

17590

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.606

17591

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

1.670

17592

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.931

17593

\[ {}x y^{\prime }-3 y+y^{2} = 4 x^{2}-4 x \]

[_rational, _Riccati]

1.539

17594

\[ {}y^{\prime } = y^{2}+\frac {1}{x^{4}} \]

[_rational, [_Riccati, _special]]

1.417

17595

\[ {}\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime } = \left (1+y^{2}\right )^{{3}/{2}} \]

[‘y=_G(x,y’)‘]

3.704

17596

\[ {}y^{\prime } \left (x^{2}+y^{2}+3\right ) = 2 x \left (2 y-\frac {x^{2}}{y}\right ) \]

[_rational]

2.862

17597

\[ {}y^{\prime } = \frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \]

[[_homogeneous, ‘class G‘], _rational]

2.629

17598

\[ {}\left (x \left (x +y\right )+a^{2}\right ) y^{\prime } = y \left (x +y\right )+b^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.500

17599

\[ {}y^{\prime } = k y+f \left (x \right ) \]

[[_linear, ‘class A‘]]

1.224

17600

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]

1.002