# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x^{\prime \prime }+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.390 |
|
\[
{}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.022 |
|
\[
{}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
2.055 |
|
\[
{}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
0.999 |
|
\[
{}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
3.197 |
|
\[
{}x^{\prime \prime }+x {x^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.621 |
|
\[
{}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.316 |
|
\[
{}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
2.143 |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.544 |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.450 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.314 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
2.011 |
|
\[
{}y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
2.395 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.262 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.171 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.557 |
|
\[
{}y^{\prime \prime }+\alpha y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.105 |
|
\[
{}y^{\prime \prime }+\alpha ^{2} y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.116 |
|
\[
{}y^{\prime \prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.253 |
|
\[
{}y^{\prime \prime }+\lambda ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.332 |
|
\[
{}y^{\prime \prime }+\lambda ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.162 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.179 |
|
\[
{}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.195 |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.804 |
|
\[
{}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
0.132 |
|
\[
{}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0
\] |
[[_high_order, _missing_y]] |
✓ |
0.279 |
|
\[
{}y^{\prime } = 1-x y
\] |
[_linear] |
✓ |
0.402 |
|
\[
{}y^{\prime } = \frac {y-x}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
0.333 |
|
\[
{}y^{\prime } = y \sin \left (x \right )
\] |
[_separable] |
✓ |
0.586 |
|
\[
{}y^{\prime \prime }+x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.353 |
|
\[
{}y^{\prime \prime }-y^{\prime } \sin \left (x \right ) = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.669 |
|
\[
{}x y^{\prime \prime }+y \sin \left (x \right ) = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.144 |
|
\[
{}\ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
5.831 |
|
\[
{}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0
\] |
[NONE] |
✗ |
0.052 |
|
\[
{}y^{\prime }-2 x y = 0
\] |
[_separable] |
✓ |
0.402 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.364 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.407 |
|
\[
{}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.439 |
|
\[
{}y^{\prime \prime } = x^{2} y-y^{\prime }
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.506 |
|
\[
{}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.572 |
|
\[
{}y^{\prime } = {\mathrm e}^{y}+x y
\] |
[‘y=_G(x,y’)‘] |
✓ |
0.491 |
|
\[
{}4 x y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.688 |
|
\[
{}\left (x +1\right ) y^{\prime }-n y = 0
\] |
[_separable] |
✓ |
0.399 |
|
\[
{}9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[_Jacobi] |
✓ |
0.736 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.559 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.670 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.567 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.546 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.605 |
|
\[
{}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.812 |
|
\[
{}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.543 |
|
\[
{}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.510 |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.864 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.622 |
|
\[
{}y^{\prime \prime }-4 y = \cos \left (\pi x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.744 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.818 |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.075 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-2 t x_{1}^{2} \\ x_{2}^{\prime }=\frac {x_{2}+t}{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.067 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }={\mathrm e}^{t -x_{1}} \\ x_{2}^{\prime }=2 \,{\mathrm e}^{x_{1}} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.061 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.067 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}^{2}}{x_{2}} \\ x_{2}^{\prime }=-x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.058 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {{\mathrm e}^{-x}}{t} \\ y^{\prime }=\frac {x \,{\mathrm e}^{-y}}{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.068 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {t +y}{x+y} \\ y^{\prime }=\frac {x-t}{x+y} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.064 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {t -y}{-x+y} \\ y^{\prime }=\frac {x-t}{-x+y} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.066 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {t +y}{x+y} \\ y^{\prime }=\frac {t +x}{x+y} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.065 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-9 y \\ y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.397 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=t +y \\ y^{\prime }=x-t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.480 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+3 x+4 y=0 \\ y^{\prime }+2 x+5 y=0 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.536 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+5 y \\ y^{\prime }=-x-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.589 |
|
\[
{}\left [\begin {array}{c} 4 x^{\prime }-y^{\prime }+3 x=\sin \left (t \right ) \\ x^{\prime }+y=\cos \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.878 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y+z \\ y^{\prime }=z \\ z^{\prime }=-x+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.627 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y+z \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.455 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=y \\ y^{\prime \prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.044 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }+y^{\prime }+x=0 \\ x^{\prime }+y^{\prime \prime }=0 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.053 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=3 x+y \\ y^{\prime }=-2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.047 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=x^{2}+y \\ y^{\prime }=-2 x x^{\prime }+x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.036 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2} \\ y^{\prime }=2 x y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.057 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-\frac {1}{y} \\ y^{\prime }=\frac {1}{x} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.058 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {x}{y} \\ y^{\prime }=\frac {y}{x} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.059 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {y}{x-y} \\ y^{\prime }=\frac {x}{x-y} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.064 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\sin \left (x\right ) \cos \left (y\right ) \\ y^{\prime }=\cos \left (x\right ) \sin \left (y\right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.063 |
|
\[
{}\left [\begin {array}{c} {\mathrm e}^{t} x^{\prime }=\frac {1}{y} \\ {\mathrm e}^{t} y^{\prime }=\frac {1}{x} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.077 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\cos \left (x\right )^{2} \cos \left (y\right )^{2}+\sin \left (x\right )^{2} \cos \left (y\right )^{2} \\ y^{\prime }=-\frac {\sin \left (2 x\right ) \sin \left (2 y\right )}{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.073 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=8 y-x \\ y^{\prime }=x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.336 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=-x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.301 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.644 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-2 x+4 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.537 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-5 y \\ y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.610 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y+z-x \\ y^{\prime }=x-y+z \\ z^{\prime }=x+y-z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.449 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+2 y-z \\ z^{\prime }=x-y+2 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.480 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+z \\ z^{\prime }=y-2 z-3 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.583 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+2 x-y=-{\mathrm e}^{2 t} \\ y^{\prime }+3 x-2 y=6 \,{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.876 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y-\cos \left (t \right ) \\ y^{\prime }=-y-2 x+\cos \left (t \right )+\sin \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.322 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y+\tan \left (t \right )^{2}-1 \\ y^{\prime }=\tan \left (t \right )-x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.125 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.081 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\frac {1}{\cos \left (t \right )} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.821 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=1-x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.559 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3-2 y \\ y^{\prime }=2 x-2 t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.670 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y+\sin \left (t \right ) \\ y^{\prime }=x+\cos \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.745 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y+{\mathrm e}^{t} \\ y^{\prime }=x+y-{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.538 |
|