2.2.171 Problems 17001 to 17100

Table 2.343: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17001

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}} \]
i.c.

[_separable]

3.038

17002

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

38.304

17003

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

5.565

17004

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]
i.c.

[_separable]

6.279

17005

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]
i.c.

[_separable]

2.372

17006

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1.892

17007

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

3.147

17008

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]
i.c.

[_separable]

4.276

17009

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

2.732

17010

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]
i.c.

[_separable]

2.622

17011

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]
i.c.

[_separable]

3.301

17012

\[ {}y^{\prime } = \frac {a y+b}{c y+d} \]

[_quadrature]

1.478

17013

\[ {}y^{\prime }+4 y = t +{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

1.206

17014

\[ {}y^{\prime }-2 y = t^{2} {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.501

17015

\[ {}y^{\prime }+y = t \,{\mathrm e}^{-t}+1 \]

[[_linear, ‘class A‘]]

1.547

17016

\[ {}y^{\prime }+\frac {y}{t} = 5+\cos \left (2 t \right ) \]

[_linear]

1.628

17017

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.109

17018

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

1.266

17019

\[ {}y^{\prime }+2 t y = 16 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

2.291

17020

\[ {}\left (t^{2}+1\right ) y^{\prime }+4 t y = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

2.042

17021

\[ {}2 y^{\prime }+y = 3 t \]

[[_linear, ‘class A‘]]

1.033

17022

\[ {}t y^{\prime }-y = t^{3} {\mathrm e}^{-t} \]

[_linear]

1.188

17023

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.367

17024

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

1.100

17025

\[ {}y^{\prime }-y = 2 t \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.390

17026

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.879

17027

\[ {}t y^{\prime }+4 y = t^{2}-t +1 \]
i.c.

[_linear]

1.580

17028

\[ {}y^{\prime }+\frac {2 y}{t} = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

1.639

17029

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.312

17030

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]
i.c.

[_linear]

1.670

17031

\[ {}t^{3} y^{\prime }+4 t^{2} y = {\mathrm e}^{-t} \]
i.c.

[_linear]

1.542

17032

\[ {}t y^{\prime }+\left (t +1\right ) y = t \]
i.c.

[_linear]

1.359

17033

\[ {}y^{\prime }-\frac {y}{3} = 3 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.499

17034

\[ {}2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1.320

17035

\[ {}3 y^{\prime }-2 y = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1.478

17036

\[ {}t y^{\prime }+\left (t +1\right ) y = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1.938

17037

\[ {}t y^{\prime }+2 y = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

1.439

17038

\[ {}\sin \left (t \right ) y^{\prime }+\cos \left (t \right ) y = {\mathrm e}^{t} \]
i.c.

[_linear]

38.579

17039

\[ {}y^{\prime }+\frac {y}{2} = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.674

17040

\[ {}y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4} \]
i.c.

[[_linear, ‘class A‘]]

1.264

17041

\[ {}y^{\prime }+\frac {y}{4} = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

2.030

17042

\[ {}y^{\prime }-y = 1+3 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.596

17043

\[ {}y^{\prime }-\frac {3 y}{2} = 3 t +3 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.482

17044

\[ {}y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t} \]

[[_linear, ‘class A‘]]

1.601

17045

\[ {}y^{\prime }+\frac {y}{t} = 3 \cos \left (2 t \right ) \]

[_linear]

1.473

17046

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

1.393

17047

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

1.082

17048

\[ {}\left (t -3\right ) y^{\prime }+\ln \left (t \right ) y = 2 t \]
i.c.

[_linear]

3.266

17049

\[ {}t \left (-4+t \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1.732

17050

\[ {}y^{\prime }+\tan \left (t \right ) y = \sin \left (t \right ) \]
i.c.

[_linear]

1.915

17051

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

2.020

17052

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

1.896

17053

\[ {}\ln \left (t \right ) y^{\prime }+y = \cot \left (t \right ) \]
i.c.

[_linear]

3.000

17054

\[ {}y^{\prime } = \frac {t -y}{2 t +5 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.684

17055

\[ {}y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

[‘y=_G(x,y’)‘]

1.691

17056

\[ {}y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

[‘y=_G(x,y’)‘]

2.423

17057

\[ {}y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

[‘y=_G(x,y’)‘]

1.540

17058

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1.324

17059

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

1.682

17060

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

1.777

17061

\[ {}y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.452

17062

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

6.227

17063

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

2.020

17064

\[ {}y^{\prime }+y^{3} = 0 \]
i.c.

[_quadrature]

1.700

17065

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]
i.c.

[_separable]

2.132

17066

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

1.991

17067

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

1.537

17068

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

1.523

17069

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.664

17070

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0 \]
i.c.

[_separable]

1.237

17071

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

2.671

17072

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.469

17073

\[ {}3 x^{2}-2 x y+2+\left (6 y^{2}-x^{2}+3\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.418

17074

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_separable]

1.738

17075

\[ {}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.113

17076

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.693

17077

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )+2 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

6.993

17078

\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

8.477

17079

\[ {}y \,{\mathrm e}^{x y} \cos \left (2 x \right )-2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+2 x +\left (x \,{\mathrm e}^{x y} \cos \left (2 x \right )-3\right ) y^{\prime } = 0 \]

[_exact]

36.070

17080

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

1.453

17081

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

2.084

17082

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

4.677

17083

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.932

17084

\[ {}9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.954

17085

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1.615

17086

\[ {}\frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

unknown

12.865

17087

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

unknown

1.266

17088

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.206

17089

\[ {}3 x^{2} y+2 x y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

2.147

17090

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

[[_linear, ‘class A‘]]

1.097

17091

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

[_quadrature]

0.431

17092

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1.742

17093

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.644

17094

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

[_rational]

1.344

17095

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1.489

17096

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.808

17097

\[ {}y y^{\prime } = x +1 \]

[_separable]

2.228

17098

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

[_separable]

1.291

17099

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}} = 1 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

32.068

17100

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

[_separable]

2.110