2.2.168 Problems 16701 to 16800

Table 2.337: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16701

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

2.494

16702

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13.415

16703

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

1.447

16704

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

2.085

16705

\[ {}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.032

16706

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

5.118

16707

\[ {}2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

[_Bernoulli]

10.136

16708

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.751

16709

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

2.984

16710

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

2.570

16711

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.398

16712

\[ {}y^{\prime } \cos \left (y\right )+\sin \left (y\right ) = x +1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.313

16713

\[ {}y y^{\prime }+1 = \left (-1+x \right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

[‘y=_G(x,y’)‘]

3.020

16714

\[ {}y^{\prime }+x \sin \left (2 y\right ) = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

6.570

16715

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

89.151

16716

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

2.075

16717

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

27.219

16718

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

47.975

16719

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

[[_homogeneous, ‘class D‘], _exact, _rational]

3.641

16720

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

33.999

16721

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.388

16722

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

19.395

16723

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact]

38.336

16724

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

44.484

16725

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

8.524

16726

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

2.168

16727

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14.911

16728

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.573

16729

\[ {}x^{2}+y-x y^{\prime } = 0 \]

[_linear]

1.708

16730

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.471

16731

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

[_linear]

1.464

16732

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

2.100

16733

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+y^{\prime } \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

4.213

16734

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

[_rational]

2.817

16735

\[ {}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.110

16736

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

2.535

16737

\[ {}x -x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.892

16738

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

[_quadrature]

0.339

16739

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \]

[_separable]

0.459

16740

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

[_quadrature]

0.409

16741

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

1.131

16742

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

0.510

16743

\[ {}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1.023

16744

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

0.832

16745

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.925

16746

\[ {}{y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

1.726

16747

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

0.726

16748

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

[_quadrature]

4.386

16749

\[ {}x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \]

[_quadrature]

2.720

16750

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

[_quadrature]

0.256

16751

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

[_quadrature]

3.409

16752

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

2.219

16753

\[ {}{y^{\prime }}^{2} x = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

[_quadrature]

0.557

16754

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

[_quadrature]

2.467

16755

\[ {}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}} \]

[_quadrature]

214.365

16756

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

[_quadrature]

0.645

16757

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

1.920

16758

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

6.031

16759

\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.319

16760

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.525

16761

\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \]

[_dAlembert]

1.220

16762

\[ {}y = {y^{\prime }}^{2} x -\frac {1}{y^{\prime }} \]

[_dAlembert]

3.419

16763

\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \]

[_dAlembert]

2.426

16764

\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.821

16765

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.430

16766

\[ {}{y^{\prime }}^{2} x -y y^{\prime }-y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.481

16767

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.747

16768

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.445

16769

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.285

16770

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

3.135

16771

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

1.734

16772

\[ {}x^{2} y^{\prime } = y^{2} x^{2}+x y+1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.758

16773

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{2}-4 y y^{\prime }-4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.563

16774

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

0.393

16775

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

11.202

16776

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

0.738

16777

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

5.457

16778

\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

9.540

16779

\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

2.665

16780

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.517

16781

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

0.739

16782

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.496

16783

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

67.687

16784

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

0.484

16785

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4.107

16786

\[ {}3 {y^{\prime }}^{2} x -6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.871

16787

\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.405

16788

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

1.887

16789

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

[_linear]

7.590

16790

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

6.309

16791

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

43.332

16792

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

147.244

16793

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.676

16794

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

[_Bernoulli]

2.533

16795

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_linear]

2.621

16796

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

1.194

16797

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

[_quadrature]

0.604

16798

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4.262

16799

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.638

16800

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

1.352