# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime }-y = -2 \,{\mathrm e}^{-x}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.483 |
|
\[
{}y^{\prime } \sin \left (x \right )-\cos \left (x \right ) y = -\frac {\sin \left (x \right )^{2}}{x^{2}}
\] |
[_linear] |
✗ |
10.569 |
|
\[
{}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1
\] |
[_linear] |
✓ |
2.564 |
|
\[
{}2 y^{\prime } x -y = 1-\frac {2}{\sqrt {x}}
\] |
[_linear] |
✗ |
3.767 |
|
\[
{}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x}
\] |
[_linear] |
✓ |
1.908 |
|
\[
{}y^{\prime } x +y = 2 x
\] |
[_linear] |
✓ |
2.315 |
|
\[
{}y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 1
\] |
[_linear] |
✓ |
1.843 |
|
\[
{}\cos \left (x \right ) y^{\prime }-y \sin \left (x \right ) = -\sin \left (2 x \right )
\] |
[_linear] |
✓ |
2.730 |
|
\[
{}y^{\prime }+2 x y = 2 x y^{2}
\] |
[_separable] |
✓ |
1.945 |
|
\[
{}3 x y^{2} y^{\prime }-2 y^{3} = x^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
11.938 |
|
\[
{}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2}
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
1.295 |
|
\[
{}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}}
\] |
[_separable] |
✓ |
1.569 |
|
\[
{}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
4.114 |
|
\[
{}2 \ln \left (x \right ) y^{\prime }+\frac {y}{x} = \frac {\cos \left (x \right )}{y}
\] |
[_Bernoulli] |
✓ |
4.592 |
|
\[
{}2 y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = y^{3} \sin \left (x \right )^{2}
\] |
[_Bernoulli] |
✓ |
8.937 |
|
\[
{}\left (x^{2}+y^{2}+1\right ) y^{\prime }+x y = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
1.819 |
|
\[
{}y^{\prime }-\cos \left (x \right ) y = y^{2} \cos \left (x \right )
\] |
[_separable] |
✓ |
2.500 |
|
\[
{}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )}
\] |
[‘y=_G(x,y’)‘] |
✓ |
3.501 |
|
\[
{}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right )
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
2.387 |
|
\[
{}y^{\prime } \cos \left (y\right )+\sin \left (y\right ) = x +1
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
2.906 |
|
\[
{}y y^{\prime }+1 = \left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}}
\] |
[‘y=_G(x,y’)‘] |
✗ |
3.200 |
|
\[
{}y^{\prime }+\sin \left (2 y\right ) x = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2}
\] |
[‘y=_G(x,y’)‘] |
✗ |
6.531 |
|
\[
{}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
170.376 |
|
\[
{}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0
\] |
[_exact, _rational] |
✓ |
1.955 |
|
\[
{}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
23.955 |
|
\[
{}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
49.066 |
|
\[
{}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}}
\] |
[[_homogeneous, ‘class D‘], _exact, _rational] |
✓ |
3.406 |
|
\[
{}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
34.369 |
|
\[
{}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0
\] |
[_exact, _rational] |
✓ |
1.360 |
|
\[
{}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
27.418 |
|
\[
{}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
38.384 |
|
\[
{}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
49.885 |
|
\[
{}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
5.753 |
|
\[
{}y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0
\] |
[_exact, _rational] |
✓ |
2.186 |
|
\[
{}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
6.270 |
|
\[
{}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.573 |
|
\[
{}x^{2}+y-y^{\prime } x = 0
\] |
[_linear] |
✓ |
1.221 |
|
\[
{}x +y^{2}-2 x y^{\prime } y = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
1.937 |
|
\[
{}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0
\] |
[_linear] |
✓ |
1.296 |
|
\[
{}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0
\] |
[_Bernoulli] |
✓ |
2.059 |
|
\[
{}x +\sin \left (x \right )+\sin \left (y\right )+y^{\prime } \cos \left (y\right ) = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
3.787 |
|
\[
{}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0
\] |
[_rational] |
✓ |
3.550 |
|
\[
{}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
4.615 |
|
\[
{}x^{2}+y^{2}+1-2 x y^{\prime } y = 0
\] |
[_rational, _Bernoulli] |
✓ |
2.050 |
|
\[
{}x -x y+\left (y+x^{2}\right ) y^{\prime } = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.312 |
|
\[
{}4 {y^{\prime }}^{2}-9 x = 0
\] |
[_quadrature] |
✓ |
0.425 |
|
\[
{}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left (-1+{\mathrm e}^{2 x}\right )
\] |
[_separable] |
✓ |
0.536 |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2} = 0
\] |
[_quadrature] |
✓ |
0.307 |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+2 y^{2} = 0
\] |
[_separable] |
✓ |
0.709 |
|
\[
{}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0
\] |
[_quadrature] |
✓ |
0.411 |
|
\[
{}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0
\] |
[[_1st_order, _with_exponential_symmetries]] |
✓ |
1.209 |
|
\[
{}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y
\] |
[_quadrature] |
✓ |
0.498 |
|
\[
{}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
6.374 |
|
\[
{}{y^{\prime }}^{2}-4 y^{\prime } x +2 y+2 x^{2} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
1.708 |
|
\[
{}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
0.695 |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}}
\] |
[_quadrature] |
✓ |
0.740 |
|
\[
{}x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right )
\] |
[_quadrature] |
✓ |
3.166 |
|
\[
{}x = {y^{\prime }}^{2}-2 y^{\prime }+2
\] |
[_quadrature] |
✓ |
0.299 |
|
\[
{}y = y^{\prime } \ln \left (y^{\prime }\right )
\] |
[_quadrature] |
✓ |
2.389 |
|
\[
{}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }}
\] |
[_quadrature] |
✓ |
0.839 |
|
\[
{}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}}
\] |
[_quadrature] |
✓ |
0.629 |
|
\[
{}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a
\] |
[_quadrature] |
✓ |
2.547 |
|
\[
{}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}}
\] |
[_quadrature] |
✓ |
2.418 |
|
\[
{}x = \sin \left (y^{\prime }\right )+y^{\prime }
\] |
[_quadrature] |
✓ |
0.695 |
|
\[
{}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right )
\] |
[_quadrature] |
✓ |
1.644 |
|
\[
{}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right )
\] |
[_quadrature] |
✓ |
4.955 |
|
\[
{}y = 2 y^{\prime } x +\ln \left (y^{\prime }\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
3.574 |
|
\[
{}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
0.597 |
|
\[
{}y = 2 y^{\prime } x +\sin \left (y^{\prime }\right )
\] |
[_dAlembert] |
✓ |
1.299 |
|
\[
{}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }}
\] |
[_dAlembert] |
✓ |
2.992 |
|
\[
{}y = \frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }}
\] |
[_dAlembert] |
✓ |
1.295 |
|
\[
{}y = y^{\prime } x +\frac {a}{{y^{\prime }}^{2}}
\] |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
0.820 |
|
\[
{}y = y^{\prime } x +{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
0.474 |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
0.581 |
|
\[
{}y = y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}}
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
2.703 |
|
\[
{}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}}
\] |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
0.504 |
|
\[
{}{\mathrm e}^{-x} y^{\prime }+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
2.502 |
|
\[
{}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
2.821 |
|
\[
{}y^{\prime } x -y^{2}+\left (2 x +1\right ) y = x^{2}+2 x
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Riccati] |
✓ |
1.665 |
|
\[
{}x^{2} y^{\prime } = 1+x y+x^{2} y^{2}
\] |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
1.385 |
|
\[
{}\left (1+{y^{\prime }}^{2}\right ) y^{2}-4 y y^{\prime }-4 x = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✗ |
7.723 |
|
\[
{}{y^{\prime }}^{2}-4 y = 0
\] |
[_quadrature] |
✓ |
0.461 |
|
\[
{}{y^{\prime }}^{3}-4 x y^{\prime } y+8 y^{2} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
9.827 |
|
\[
{}{y^{\prime }}^{2}-y^{2} = 0
\] |
[_quadrature] |
✓ |
0.577 |
|
\[
{}y^{\prime } = y^{{2}/{3}}+a
\] |
[_quadrature] |
✓ |
6.402 |
|
\[
{}\left (y^{\prime } x +y\right )^{2}+3 x^{5} \left (y^{\prime } x -2 y\right ) = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
8.314 |
|
\[
{}y \left (y-2 y^{\prime } x \right )^{2} = 2 y^{\prime }
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
2.440 |
|
\[
{}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
0.572 |
|
\[
{}\left (y^{\prime }-1\right )^{2} = y^{2}
\] |
[_quadrature] |
✓ |
0.529 |
|
\[
{}y = {y^{\prime }}^{2}-y^{\prime } x +x
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
0.556 |
|
\[
{}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
89.006 |
|
\[
{}y^{2} {y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
0.541 |
|
\[
{}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
6.242 |
|
\[
{}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.223 |
|
\[
{}y = y^{\prime } x +\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}}
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
4.409 |
|
\[
{}y^{\prime } = \left (x -y\right )^{2}+1
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
1.807 |
|
\[
{}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x
\] |
[_linear] |
✓ |
7.281 |
|
\[
{}y^{\prime }+\cos \left (x \right ) y = y^{n} \sin \left (2 x \right )
\] |
[_Bernoulli] |
✓ |
5.327 |
|
\[
{}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
30.030 |
|
\[
{}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
69.872 |
|