2.2.167 Problems 16601 to 16700

Table 2.335: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16601

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

1.110

16602

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.900

16603

\[ {}y^{\prime } = \sin \left (x y\right ) \]
i.c.

[‘y=_G(x,y’)‘]

1.465

16604

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

1.255

16605

\[ {}2 y+y^{\prime } = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

1.092

16606

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

1.305

16607

\[ {}y^{\prime } = x +1 \]

[_quadrature]

0.286

16608

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

0.897

16609

\[ {}y^{\prime } = y-x \]

[[_linear, ‘class A‘]]

0.927

16610

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

1.081

16611

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

0.430

16612

\[ {}y^{\prime } = x \left (-1+y\right ) \]

[_separable]

1.151

16613

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.337

16614

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.186

16615

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

0.957

16616

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

1.002

16617

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

1.430

16618

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.414

16619

\[ {}y^{\prime } = 1-x \]

[_quadrature]

0.322

16620

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

0.922

16621

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

0.957

16622

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

1.406

16623

\[ {}y^{\prime } = 1 \]

[_quadrature]

0.597

16624

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.308

16625

\[ {}y^{\prime } = y \]

[_quadrature]

0.642

16626

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

1.407

16627

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

2.306

16628

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

16.418

16629

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

1.180

16630

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

1.871

16631

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

2.157

16632

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

1.747

16633

\[ {}x y^{\prime } y+1+y^{2} = 0 \]

[_separable]

2.580

16634

\[ {}y^{\prime } \sin \left (x \right )-\cos \left (x \right ) y = 0 \]
i.c.

[_separable]

1.979

16635

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

1.654

16636

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

[_separable]

2.707

16637

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

2.637

16638

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

0.678

16639

\[ {}y \ln \left (y\right )+y^{\prime } x = 1 \]
i.c.

[_separable]

2.641

16640

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

2.616

16641

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

3.118

16642

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

2.547

16643

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left ({\mathrm e}^{2 x}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

4.190

16644

\[ {}\sin \left (x \right ) y^{2}+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.358

16645

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.975

16646

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

0.996

16647

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

12.774

16648

\[ {}y^{\prime } x +y = a \left (x y+1\right ) \]
i.c.

[_linear]

1.183

16649

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

4.159

16650

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.348

16651

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

1.145

16652

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

0.447

16653

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

0.344

16654

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

0.464

16655

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

0.444

16656

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

0.337

16657

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

0.419

16658

\[ {}x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]
i.c.

[_separable]

2.336

16659

\[ {}x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]
i.c.

[_separable]

2.968

16660

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]
i.c.

[_separable]

2.929

16661

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]
i.c.

[_separable]

3.309

16662

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

1.940

16663

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

1.515

16664

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

1.091

16665

\[ {}x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]
i.c.

[_separable]

8.095

16666

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.515

16667

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

1.384

16668

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.620

16669

\[ {}x^{2} y^{\prime } = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.619

16670

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.931

16671

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.708

16672

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.980

16673

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.641

16674

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

1.187

16675

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.016

16676

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.245

16677

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.241

16678

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.886

16679

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.981

16680

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.233

16681

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.581

16682

\[ {}2 x \left (x -y^{2}\right ) y^{\prime }+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.009

16683

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.981

16684

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘]]

1.967

16685

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.955

16686

\[ {}2 y+y^{\prime } = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.060

16687

\[ {}x^{2}-y^{\prime } x = y \]
i.c.

[_linear]

1.680

16688

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

2.270

16689

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

1.387

16690

\[ {}\cos \left (x \right ) y^{\prime }-y \sin \left (x \right ) = 2 x \]
i.c.

[_linear]

2.244

16691

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

1.597

16692

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]
i.c.

[_linear]

11.067

16693

\[ {}x \ln \left (x \right ) y^{\prime }-y = 3 x^{3} \ln \left (x \right )^{2} \]

[_linear]

1.519

16694

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

2.008

16695

\[ {}y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \]
i.c.

[_separable]

1.630

16696

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

1.601

16697

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.728

16698

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

[_linear]

1.455

16699

\[ {}y^{\prime }+y x \,{\mathrm e}^{x} = {\mathrm e}^{{\mathrm e}^{x} \left (1-x \right )} \]

[_linear]

1.552

16700

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

[[_linear, ‘class A‘]]

2.309