2.2.167 Problems 16601 to 16700

Table 2.335: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16601

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[_separable]

2.917

16602

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

0.582

16603

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.398

16604

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.197

16605

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

0.450

16606

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.196

16607

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

0.411

16608

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.400

16609

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

[[_2nd_order, _missing_x]]

0.396

16610

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_x]]

0.237

16611

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.682

16612

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.528

16613

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

1.833

16614

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.147

16615

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.250

16616

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.831

16617

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.862

16618

\[ {}2 y^{\prime \prime } = 3 y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.861

16619

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.414

16620

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.285

16621

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.099

16622

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.194

16623

\[ {}y^{3} y^{\prime \prime } = -1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.990

16624

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.487

16625

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

25.229

16626

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

5.277

16627

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]
i.c.

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.051

16628

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.103

16629

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

0.879

16630

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.138

16631

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.868

16632

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.490

16633

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

0.070

16634

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.047

16635

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.075

16636

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.611

16637

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.080

16638

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

0.081

16639

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.514

16640

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.062

16641

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

[[_high_order, _missing_x]]

0.085

16642

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

0.084

16643

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.072

16644

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.070

16645

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.074

16646

\[ {}y^{\left (5\right )} = 0 \]

[[_high_order, _quadrature]]

0.041

16647

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.075

16648

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.067

16649

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.131

16650

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

1.701

16651

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

1.694

16652

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

1.540

16653

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

1.560

16654

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.129

16655

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.063

16656

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

1.661

16657

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

1.645

16658

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.829

16659

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.915

16660

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.067

16661

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.246

16662

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14.924

16663

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13.425

16664

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.039

16665

\[ {}y^{\prime \prime }+k^{2} y = k \]

[[_2nd_order, _missing_x]]

1.885

16666

\[ {}y^{\prime \prime \prime }+y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.121

16667

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

[[_3rd_order, _missing_x]]

0.107

16668

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

[[_3rd_order, _missing_x]]

0.101

16669

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

[[_3rd_order, _missing_x]]

0.099

16670

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

[[_high_order, _missing_x]]

0.108

16671

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

[[_high_order, _missing_x]]

0.121

16672

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

[[_high_order, _missing_x]]

0.105

16673

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

[[_high_order, _missing_x]]

0.107

16674

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

[[_high_order, _missing_x]]

0.110

16675

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

[[_high_order, _missing_y]]

0.122

16676

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

0.127

16677

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

[[_high_order, _missing_y]]

0.144

16678

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.174

16679

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.161

16680

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.204

16681

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.165

16682

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.186

16683

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.145

16684

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

0.135

16685

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.151

16686

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

[[_2nd_order, _missing_x]]

1.007

16687

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

1.744

16688

\[ {}y^{\prime \prime }+9 y = 9 \]

[[_2nd_order, _missing_x]]

2.431

16689

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

[[_3rd_order, _missing_x]]

0.102

16690

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

[[_3rd_order, _missing_x]]

0.104

16691

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

[[_high_order, _missing_x]]

0.119

16692

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

[[_high_order, _missing_x]]

0.108

16693

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

[[_high_order, _missing_x]]

0.118

16694

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.083

16695

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

1.694

16696

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.922

16697

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.100

16698

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.238

16699

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

1.590

16700

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

1.649