# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.346 |
|
\[
{}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.890 |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.845 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.627 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0
\] |
[_Bessel] |
✓ |
1.216 |
|
\[
{}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.923 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.902 |
|
\[
{}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.954 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0
\] |
[_Laguerre] |
✓ |
1.303 |
|
\[
{}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.874 |
|
\[
{}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.715 |
|
\[
{}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.872 |
|
\[
{}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.229 |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.822 |
|
\[
{}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.862 |
|
\[
{}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.936 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (-x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.834 |
|
\[
{}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.947 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.639 |
|
\[
{}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.107 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.856 |
|
\[
{}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x y^{\prime }+\left (4 x^{3}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.470 |
|
\[
{}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.852 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-\left (2 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.293 |
|
\[
{}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.072 |
|
\[
{}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.018 |
|
\[
{}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.262 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.997 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.912 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.676 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0
\] |
[_Laguerre] |
✓ |
1.331 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.296 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=1-2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.571 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=6 x-7 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.373 |
|
\[
{}\left [\begin {array}{c} t x^{\prime }+2 x=15 y \\ t y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.052 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.493 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.510 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=3 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.530 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.549 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.307 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.340 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=8 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.368 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.531 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.413 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=8 x+2 y-17 \\ y^{\prime }=4 x+y-13 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.639 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=8 x+2 y+7 \,{\mathrm e}^{2 t} \\ y^{\prime }=4 x+y-7 \,{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.596 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+3 y-6 \,{\mathrm e}^{3 t} \\ y^{\prime }=x+6 y+2 \,{\mathrm e}^{3 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.613 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=4 x+24 t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.616 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.517 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+3 y+5 \operatorname {Heaviside}\left (t -2\right ) \\ y^{\prime }=x+6 y+17 \operatorname {Heaviside}\left (t -2\right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.656 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.339 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-5 y \\ y^{\prime }=3 x-7 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.542 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-5 y+4 \\ y^{\prime }=3 x-7 y+5 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.841 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=6 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.318 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x y-6 y \\ y^{\prime }=x-y-5 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.051 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.335 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.090 |
|
\[
{}y y^{\prime }+y^{4} = \sin \left (x \right )
\] |
[‘y=_G(x,y’)‘] |
✗ |
2.723 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.170 |
|
\[
{}{y^{\prime }}^{2}+y = 0
\] |
[_quadrature] |
✓ |
0.553 |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.500 |
|
\[
{}x {y^{\prime \prime }}^{2}+2 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.112 |
|
\[
{}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right )
\] |
[NONE] |
✗ |
0.399 |
|
\[
{}2 x -1-y^{\prime } = 0
\] |
[_quadrature] |
✓ |
0.296 |
|
\[
{}2 x -y-y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.198 |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
1.036 |
|
\[
{}y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
1.396 |
|
\[
{}y^{\prime }+y = \sin \left (x \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
1.171 |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.842 |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.407 |
|
\[
{}x^{\prime \prime }+2 x^{\prime }-10 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.027 |
|
\[
{}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.661 |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+40 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.753 |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.067 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.066 |
|
\[
{}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.205 |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.476 |
|
\[
{}y^{\prime } = -\frac {x}{y}
\] |
[_separable] |
✓ |
2.813 |
|
\[
{}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
2.879 |
|
\[
{}y^{\prime } = -\frac {2 y}{x}-3
\] |
[_linear] |
✓ |
1.940 |
|
\[
{}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.951 |
|
\[
{}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
4.985 |
|
\[
{}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3}
\] |
[_quadrature] |
✓ |
0.371 |
|
\[
{}y^{\prime } = x \sin \left (x^{2}\right )
\] |
[_quadrature] |
✓ |
0.345 |
|
\[
{}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}}
\] |
[_quadrature] |
✓ |
0.310 |
|
\[
{}y^{\prime } = \frac {1}{x \ln \left (x \right )}
\] |
[_quadrature] |
✓ |
0.300 |
|
\[
{}y^{\prime } = x \ln \left (x \right )
\] |
[_quadrature] |
✓ |
0.322 |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
0.322 |
|
\[
{}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )}
\] |
[_quadrature] |
✓ |
0.355 |
|
\[
{}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )}
\] |
[_quadrature] |
✓ |
0.405 |
|
\[
{}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x}
\] |
[_quadrature] |
✓ |
0.415 |
|
\[
{}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}}
\] |
[_quadrature] |
✓ |
0.371 |
|
\[
{}y^{\prime } = \frac {1}{x^{2}-16}
\] |
[_quadrature] |
✓ |
0.398 |
|
\[
{}y^{\prime } = \cos \left (x \right ) \cot \left (x \right )
\] |
[_quadrature] |
✓ |
0.420 |
|
\[
{}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right )
\] |
[_quadrature] |
✓ |
0.545 |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
1.448 |
|
\[
{}y^{\prime }+y = \sin \left (t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
1.530 |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.421 |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.168 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.141 |
|