2.2.155 Problems 15401 to 15500

Table 2.311: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15401

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.346

15402

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.890

15403

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.845

15404

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.627

15405

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

[_Bessel]

1.216

15406

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.923

15407

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.902

15408

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.954

15409

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

[_Laguerre]

1.303

15410

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.874

15411

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.715

15412

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.872

15413

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.229

15414

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.822

15415

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

15416

\[ {}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.936

15417

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.834

15418

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.947

15419

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.639

15420

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.107

15421

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.856

15422

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x y^{\prime }+\left (4 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.470

15423

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.852

15424

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.293

15425

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.072

15426

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.018

15427

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.262

15428

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.997

15429

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.912

15430

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.676

15431

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

[_Laguerre]

1.331

15432

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.296

15433

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=1-2 x \end {array}\right ] \]

system_of_ODEs

0.571

15434

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=6 x-7 y \end {array}\right ] \]

system_of_ODEs

0.373

15435

\[ {}\left [\begin {array}{c} t x^{\prime }+2 x=15 y \\ t y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.052

15436

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.493

15437

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.510

15438

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=3 x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.530

15439

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.549

15440

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=2 x \end {array}\right ] \]

system_of_ODEs

0.307

15441

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.340

15442

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=8 x \end {array}\right ] \]

system_of_ODEs

0.368

15443

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.531

15444

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.413

15445

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+2 y-17 \\ y^{\prime }=4 x+y-13 \end {array}\right ] \]
i.c.

system_of_ODEs

0.639

15446

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+2 y+7 \,{\mathrm e}^{2 t} \\ y^{\prime }=4 x+y-7 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.596

15447

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+3 y-6 \,{\mathrm e}^{3 t} \\ y^{\prime }=x+6 y+2 \,{\mathrm e}^{3 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.613

15448

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=4 x+24 t \end {array}\right ] \]
i.c.

system_of_ODEs

0.616

15449

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.517

15450

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+3 y+5 \operatorname {Heaviside}\left (t -2\right ) \\ y^{\prime }=x+6 y+17 \operatorname {Heaviside}\left (t -2\right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.656

15451

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ] \]

system_of_ODEs

0.339

15452

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y \\ y^{\prime }=3 x-7 y \end {array}\right ] \]

system_of_ODEs

0.542

15453

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y+4 \\ y^{\prime }=3 x-7 y+5 \end {array}\right ] \]

system_of_ODEs

0.841

15454

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=6 x+2 y \end {array}\right ] \]

system_of_ODEs

0.318

15455

\[ {}\left [\begin {array}{c} x^{\prime }=x y-6 y \\ y^{\prime }=x-y-5 \end {array}\right ] \]

system_of_ODEs

0.051

15456

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-y \end {array}\right ] \]

system_of_ODEs

0.335

15457

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.090

15458

\[ {}y y^{\prime }+y^{4} = \sin \left (x \right ) \]

[‘y=_G(x,y’)‘]

2.723

15459

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.170

15460

\[ {}{y^{\prime }}^{2}+y = 0 \]

[_quadrature]

0.553

15461

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.500

15462

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

0.112

15463

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

[NONE]

0.399

15464

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

0.296

15465

\[ {}2 x -y-y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.198

15466

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

1.036

15467

\[ {}y^{\prime }+x y = 0 \]

[_separable]

1.396

15468

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.171

15469

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

0.842

15470

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.407

15471

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

[[_2nd_order, _missing_x]]

1.027

15472

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.661

15473

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

[[_2nd_order, _missing_x]]

1.753

15474

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.067

15475

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.066

15476

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

[[_Emden, _Fowler]]

1.205

15477

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

2.476

15478

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

2.813

15479

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.879

15480

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

1.940

15481

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.951

15482

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

4.985

15483

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

0.371

15484

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

0.345

15485

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

0.310

15486

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

0.300

15487

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

0.322

15488

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

0.322

15489

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

0.355

15490

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

0.405

15491

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

0.415

15492

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

0.371

15493

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

0.398

15494

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

0.420

15495

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

0.545

15496

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

1.448

15497

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.530

15498

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.421

15499

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.168

15500

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.141