# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.082 |
|
\[
{}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.089 |
|
\[
{}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.117 |
|
\[
{}16 y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.095 |
|
\[
{}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.089 |
|
\[
{}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.092 |
|
\[
{}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.107 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.959 |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.657 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.619 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.122 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.940 |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.995 |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.373 |
|
\[
{}x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.982 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.171 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.019 |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.111 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.930 |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.198 |
|
\[
{}4 x^{2} y^{\prime \prime }+37 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.584 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.585 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -25 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.866 |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.136 |
|
\[
{}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.914 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.422 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.393 |
|
\[
{}x^{2} y^{\prime \prime }-11 y^{\prime } x +36 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.509 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.767 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.975 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.907 |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.148 |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.149 |
|
\[
{}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.161 |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.145 |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 y^{\prime } x +16 y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.169 |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
0.165 |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.156 |
|
\[
{}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_high_order, _exact, _linear, _homogeneous]] |
✓ |
0.175 |
|
\[
{}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.993 |
|
\[
{}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.962 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.674 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.701 |
|
\[
{}y^{\prime \prime }-9 y = 36
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.350 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.746 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.921 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.236 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.288 |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1
\] |
[[_high_order, _missing_x]] |
✓ |
0.158 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.462 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.604 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.717 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.667 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.416 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.370 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.445 |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.383 |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.262 |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.256 |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 4 x^{2}+2 x +3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.388 |
|
\[
{}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.673 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.609 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.538 |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.212 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.748 |
|
\[
{}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.951 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.904 |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.739 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.573 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.911 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -200
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.437 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.458 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.597 |
|
\[
{}y^{\prime \prime }+9 y = 9 x^{4}-9
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.631 |
|
\[
{}y^{\prime \prime }+9 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.896 |
|
\[
{}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.916 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.677 |
|
\[
{}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.775 |
|
\[
{}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
1.446 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.165 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.655 |
|
\[
{}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.033 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.496 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 20
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.197 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.125 |
|
\[
{}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.807 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.639 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.581 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.521 |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.607 |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.608 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.704 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.605 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.727 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.663 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 100
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.624 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.703 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.702 |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.979 |
|
\[
{}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.955 |
|