2.2.154 Problems 15301 to 15400

Table 2.309: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15301

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[_quadrature]

0.458

15302

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _quadrature]]

0.426

15303

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.205

15304

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]
i.c.

[_quadrature]

0.329

15305

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (-4+t \right ) \]
i.c.

[_quadrature]

0.371

15306

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.251

15307

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.306

15308

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.385

15309

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.882

15310

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.332

15311

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.462

15312

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

[[_2nd_order, _missing_y]]

0.194

15313

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.543

15314

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.440

15315

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.446

15316

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.158

15317

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.225

15318

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.592

15319

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

15320

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.254

15321

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_3rd_order, _missing_y]]

1.465

15322

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.356

15323

\[ {}y^{\prime }-2 y = 0 \]

[_quadrature]

0.492

15324

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

0.516

15325

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

[_separable]

0.527

15326

\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \]

[_separable]

0.494

15327

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

[_separable]

0.515

15328

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

0.540

15329

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

0.549

15330

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

[_separable]

0.593

15331

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

[_separable]

0.567

15332

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

0.531

15333

\[ {}\left (x +1\right ) y^{\prime }-x y = 0 \]

[_separable]

0.562

15334

\[ {}\left (x +1\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

0.613

15335

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.576

15336

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.555

15337

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.565

15338

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.470

15339

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.618

15340

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.600

15341

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.501

15342

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.813

15343

\[ {}y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.589

15344

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.629

15345

\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.589

15346

\[ {}y^{\prime \prime }-x y^{\prime }-2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.533

15347

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\lambda y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.653

15348

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

[_Gegenbauer]

0.644

15349

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.519

15350

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.447

15351

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.550

15352

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.664

15353

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

15354

\[ {}y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.774

15355

\[ {}y^{\prime \prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.159

15356

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

[_quadrature]

0.276

15357

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.604

15358

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

0.721

15359

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9.053

15360

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.071

15361

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

50.325

15362

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.419

15363

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{1-{\mathrm e}^{x}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.526

15364

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.644

15365

\[ {}x y^{\prime \prime }+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.762

15366

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.803

15367

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.656

15368

\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[_separable]

0.613

15369

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

0.663

15370

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

[_separable]

0.687

15371

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.793

15372

\[ {}y^{\prime \prime }+3 x y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.761

15373

\[ {}x y^{\prime \prime }-3 x y^{\prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.710

15374

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

[_Titchmarsh]

0.734

15375

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.813

15376

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.668

15377

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.815

15378

\[ {}y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

[_separable]

0.932

15379

\[ {}y^{\prime } \cos \left (x \right )+y = 0 \]

[_separable]

1.166

15380

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

[_separable]

0.910

15381

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.795

15382

\[ {}y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.937

15383

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.049

15384

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.825

15385

\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.507

15386

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.753

15387

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.647

15388

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.537

15389

\[ {}3 \left (-2+x \right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.678

15390

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.656

15391

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{-2+x}+\frac {2 y}{x +2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.189

15392

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.722

15393

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.562

15394

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.821

15395

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.183

15396

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.822

15397

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.523

15398

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.606

15399

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.949

15400

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.901