2.2.148 Problems 14701 to 14800

Table 2.297: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14701

\[ {}\sin \left (x +y\right )-y y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

3.816

14702

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

2.435

14703

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

1.402

14704

\[ {}y^{\prime }-y^{2} = x \]

[[_Riccati, _special]]

0.961

14705

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

2.857

14706

\[ {}\left (-2+x \right ) y^{\prime } = y+3 \]

[_separable]

1.471

14707

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

2.869

14708

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

1.031

14709

\[ {}y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]

[_Riccati]

1.535

14710

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

1.353

14711

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

1.772

14712

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]

[_linear]

1.862

14713

\[ {}x y^{\prime } = \left (x -y\right )^{2} \]

[_rational, _Riccati]

1.569

14714

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

0.357

14715

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

1.070

14716

\[ {}y^{\prime }+x y = 4 x \]

[_separable]

1.396

14717

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

1.056

14718

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

1.282

14719

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.349

14720

\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

1.478

14721

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2.962

14722

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

0.980

14723

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

2.445

14724

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1.809

14725

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

[_separable]

1.728

14726

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

1.732

14727

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

4.293

14728

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

1.503

14729

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

2.852

14730

\[ {}y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.803

14731

\[ {}y^{\prime } = x y-4 x \]

[_separable]

1.194

14732

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

0.962

14733

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

1.888

14734

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

1.444

14735

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

1.187

14736

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

1.983

14737

\[ {}y^{\prime } = x y-4 x \]

[_separable]

1.148

14738

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

1.273

14739

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

1.844

14740

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

1.122

14741

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

1.260

14742

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

1.361

14743

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

1.873

14744

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

11.935

14745

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

0.924

14746

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

1.284

14747

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

2.251

14748

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

1.570

14749

\[ {}y^{\prime }-3 y^{2} x^{2} = -3 x^{2} \]

[_separable]

3.053

14750

\[ {}y^{\prime }-3 y^{2} x^{2} = 3 x^{2} \]

[_separable]

3.187

14751

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

1.863

14752

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

1.263

14753

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

2.396

14754

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

1.368

14755

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

2.102

14756

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

2.133

14757

\[ {}y^{\prime } = \frac {y^{2}-1}{x y} \]
i.c.

[_separable]

4.074

14758

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y \]
i.c.

[_separable]

1.891

14759

\[ {}x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.684

14760

\[ {}y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[‘y=_G(x,y’)‘]

3.018

14761

\[ {}y^{\prime }-x y^{2} = \sqrt {x} \]

[_Riccati]

1.632

14762

\[ {}y^{\prime } = 1+\left (x y+3 y\right )^{2} \]

[_Riccati]

5.441

14763

\[ {}y^{\prime } = 1+x y+3 y \]

[_linear]

1.158

14764

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

0.961

14765

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

0.311

14766

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

1.385

14767

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

3.338

14768

\[ {}x y^{\prime }+\cos \left (x^{2}\right ) = 827 y \]

[_linear]

1.995

14769

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

1.119

14770

\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

1.109

14771

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

0.982

14772

\[ {}y^{\prime }-2 x y = x \]

[_separable]

1.116

14773

\[ {}x y^{\prime }+3 y-10 x^{2} = 0 \]

[_linear]

1.398

14774

\[ {}x^{2} y^{\prime }+2 x y = \sin \left (x \right ) \]

[_linear]

1.277

14775

\[ {}x y^{\prime } = \sqrt {x}+3 y \]

[_linear]

1.416

14776

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = \cos \left (x \right )^{2} \]

[_linear]

2.293

14777

\[ {}x y^{\prime }+\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

2.098

14778

\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

[_linear]

2.712

14779

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

1.319

14780

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

1.028

14781

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

1.378

14782

\[ {}x y^{\prime }+3 y = 20 x^{2} \]
i.c.

[_linear]

1.824

14783

\[ {}x y^{\prime } = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

1.566

14784

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

4.116

14785

\[ {}y^{\prime }+6 x y = \sin \left (x \right ) \]
i.c.

[_linear]

1.638

14786

\[ {}x^{2} y^{\prime }+x y = \sqrt {x}\, \sin \left (x \right ) \]
i.c.

[_linear]

2.056

14787

\[ {}-y+x y^{\prime } = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

1.625

14788

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.666

14789

\[ {}y^{\prime } = \frac {\left (-2 y+3 x \right )^{2}+1}{-2 y+3 x}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.996

14790

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

122.847

14791

\[ {}y^{\prime } = 1+\left (y-x \right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

3.171

14792

\[ {}x^{2} y^{\prime }-x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.850

14793

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.608

14794

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.479

14795

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.010

14796

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

3.409

14797

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.893

14798

\[ {}y^{\prime }+3 y \cot \left (x \right ) = 6 \cos \left (x \right ) y^{{2}/{3}} \]

[_Bernoulli]

3.879

14799

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.760

14800

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.808