2.2.147 Problems 14601 to 14700

Table 2.295: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14601

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.502

14602

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

4.003

14603

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

2.062

14604

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

1.972

14605

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.367

14606

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.382

14607

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.357

14608

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.332

14609

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.419

14610

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.418

14611

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5.053

14612

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5.233

14613

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.438

14614

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.408

14615

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.370

14616

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.391

14617

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.389

14618

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.494

14619

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

39.117

14620

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

72.783

14621

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

23.078

14622

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.462

14623

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.760

14624

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.860

14625

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

40.249

14626

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.800

14627

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.217

14628

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19.529

14629

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18.976

14630

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.980

14631

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.263

14632

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.875

14633

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.876

14634

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.720

14635

\[ {}y^{\prime \prime }+4 y = 8 \]
i.c.

[[_2nd_order, _missing_x]]

0.323

14636

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.290

14637

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.349

14638

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.190

14639

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

14640

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (-4+t \right ) \cos \left (-20+5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.225

14641

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.989

14642

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.150

14643

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.563

14644

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.961

14645

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.995

14646

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \delta \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.750

14647

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

14648

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.000

14649

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (-4+t \right )\right ) \cos \left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.400

14650

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.239

14651

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.326

14652

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.334

14653

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.244

14654

\[ {}y^{\prime \prime }+16 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.335

14655

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

0.346

14656

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

1.198

14657

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

1.073

14658

\[ {}x y^{\prime } = \arcsin \left (x^{2}\right ) \]

[_quadrature]

19.700

14659

\[ {}y y^{\prime } = 2 x \]

[_separable]

2.944

14660

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

1.505

14661

\[ {}x^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

0.691

14662

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.089

14663

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

27.977

14664

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.792

14665

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

0.266

14666

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

0.319

14667

\[ {}x y^{\prime }+\sqrt {x} = 2 \]

[_quadrature]

0.334

14668

\[ {}\sqrt {4+x}\, y^{\prime } = 1 \]

[_quadrature]

0.408

14669

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

0.352

14670

\[ {}y^{\prime } = x \cos \left (x \right ) \]

[_quadrature]

0.343

14671

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

0.378

14672

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

0.418

14673

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

0.296

14674

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

1.675

14675

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

1.328

14676

\[ {}y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _quadrature]]

0.101

14677

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

0.506

14678

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

0.658

14679

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

0.538

14680

\[ {}x y^{\prime }+2 = \sqrt {x} \]
i.c.

[_quadrature]

0.640

14681

\[ {}y^{\prime } \cos \left (x \right )-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

1.064

14682

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.543

14683

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

1.653

14684

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

0.334

14685

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

0.507

14686

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

0.575

14687

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

0.304

14688

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

0.513

14689

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

0.533

14690

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

0.533

14691

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

0.470

14692

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

0.804

14693

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

0.510

14694

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

0.445

14695

\[ {}x y^{\prime } = \sin \left (x \right ) \]
i.c.

[_quadrature]

0.622

14696

\[ {}x y^{\prime } = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

0.664

14697

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]
i.c.

[_quadrature]

0.292

14698

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[_quadrature]

0.296

14699

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]
i.c.

[_quadrature]

0.314

14700

\[ {}y^{\prime }+3 x y = 6 x \]

[_separable]

1.180