2.2.14 Problems 1301 to 1400

Table 2.29: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1301

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.788

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.057

1303

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.944

1304

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.967

1305

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.862

1306

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.967

1307

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

2.699

1308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.964

1309

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.876

1310

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.977

1311

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.961

1312

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.601

1313

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.378

1314

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.295

1315

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.348

1316

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.383

1317

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.381

1318

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.030

1319

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.082

1320

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

0.082

1321

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.082

1322

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.102

1323

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.155

1324

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.102

1325

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.101

1326

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.148

1327

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.886

1328

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

0.873

1329

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1.095

1330

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.037

1331

\[ {}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

0.894

1332

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

20.161

1333

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1.066

1334

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.161

1335

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.136

1336

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.157

1337

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.889

1338

\[ {}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.140

1339

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.305

1340

\[ {}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.480

1341

\[ {}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.248

1342

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.650

1343

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.521

1344

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.725

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.936

1346

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.270

1347

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.117

1348

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.470

1349

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.484

1350

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.295

1351

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.704

1352

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.546

1353

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.108

1354

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.605

1355

\[ {}u^{\prime \prime }+2 u = 0 \]

[[_2nd_order, _missing_x]]

2.286

1356

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.860

1357

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

77.243

1358

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

76.000

1359

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

77.411

1360

\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]
i.c.

[NONE]

0.343

1361

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.366

1362

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.328

1363

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.306

1364

\[ {}\left (1-x \right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.374

1365

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.417

1366

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.338

1367

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.316

1368

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.349

1369

\[ {}\left (-x^{2}+3\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.377

1370

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.314

1371

\[ {}2 y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.338

1372

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.332

1373

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.379

1374

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.329

1375

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.332

1376

\[ {}y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.381

1377

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.327

1378

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.378

1379

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.321

1380

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.389

1381

\[ {}y^{\prime \prime }+x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.235

1382

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.364

1383

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.323

1384

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.671

1385

\[ {}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.774

1386

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+\sin \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.762

1387

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.408

1388

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.424

1389

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.449

1390

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.567

1391

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.571

1392

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.443

1393

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.618

1394

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.395

1395

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.455

1396

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.315

1397

\[ {}y^{\prime }-x y = 0 \]

[_separable]

0.361

1398

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

0.372

1399

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (1+\alpha \right ) y = 0 \]

[_Gegenbauer]

0.579

1400

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{10}+\frac {3 x_{2}}{40} \\ x_{2}^{\prime }=\frac {x_{1}}{10}-\frac {x_{2}}{5} \end {array}\right ] \]
i.c.

system_of_ODEs

0.600