2.2.13 Problems 1201 to 1300

Table 2.27: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1201

\[ {}2 x -2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+{\mathrm e}^{x y} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{x y} x \cos \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact]

10.243

1202

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

1.414

1203

\[ {}x \ln \left (x \right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

1.270

1204

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

4.452

1205

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.705

1206

\[ {}-1+9 x^{2}+y+\left (x -4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.928

1207

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1.609

1208

\[ {}y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.310

1209

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.232

1210

\[ {}2 x y+3 x^{2} y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

2.178

1211

\[ {}y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

[[_linear, ‘class A‘]]

1.101

1212

\[ {}1+\left (-\sin \left (y\right )+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.446

1213

\[ {}y+\left (-{\mathrm e}^{-2 y}+2 x y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1.694

1214

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.616

1215

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {3}{y}+\left (\frac {3 x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

[_rational]

1.450

1216

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1.446

1217

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.760

1218

\[ {}y^{\prime } = \frac {x^{3}-2 y}{x} \]

[_linear]

1.435

1219

\[ {}y^{\prime } = \frac {\cos \left (x \right )+1}{2-\sin \left (y\right )} \]

[_separable]

3.071

1220

\[ {}y^{\prime } = \frac {2 x +y}{3-x +3 y^{2}} \]
i.c.

[_rational]

3.920

1221

\[ {}y^{\prime } = 3-6 x +y-2 x y \]

[_separable]

1.325

1222

\[ {}y^{\prime } = \frac {-1-2 x y-y^{2}}{x^{2}+2 x y} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.362

1223

\[ {}x y+x y^{\prime } = 1-y \]
i.c.

[_linear]

1.305

1224

\[ {}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )} \]

[_separable]

1.398

1225

\[ {}x y^{\prime }+2 y = \frac {\sin \left (x \right )}{x} \]
i.c.

[_linear]

1.632

1226

\[ {}y^{\prime } = \frac {-1-2 x y}{x^{2}+2 y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.179

1227

\[ {}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{-2+y} = 0 \]

[_separable]

1.661

1228

\[ {}x^{2}+y+\left ({\mathrm e}^{y}+x \right ) y^{\prime } = 0 \]

[_exact]

1.548

1229

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{x}} \]

[_linear]

1.546

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

2.187

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.547

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1.897

1233

\[ {}y^{\prime } = \frac {-{\mathrm e}^{2 y} \cos \left (x \right )+\cos \left (y\right ) {\mathrm e}^{-x}}{2 \,{\mathrm e}^{2 y} \sin \left (x \right )-\sin \left (y\right ) {\mathrm e}^{-x}} \]

[NONE]

41.447

1234

\[ {}y^{\prime } = {\mathrm e}^{2 x}+3 y \]

[[_linear, ‘class A‘]]

1.133

1235

\[ {}2 y+y^{\prime } = {\mathrm e}^{-x^{2}-2 x} \]

[[_linear, ‘class A‘]]

1.267

1236

\[ {}y^{\prime } = \frac {3 x^{2}-2 y-y^{3}}{2 x +3 x y^{2}} \]

[_rational]

1.519

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

2.055

1238

\[ {}\frac {-4+6 x y+2 y^{2}}{3 x^{2}+4 x y+3 y^{2}}+y^{\prime } = 0 \]

[_rational]

1.540

1239

\[ {}y^{\prime } = \frac {x^{2}-1}{1+y^{2}} \]
i.c.

[_separable]

3.473

1240

\[ {}\left (t +1\right ) y+t y^{\prime } = {\mathrm e}^{2 t} \]

[_linear]

1.338

1241

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

2.853

1242

\[ {}\frac {2 x}{y}-\frac {y}{y^{2}+x^{2}}+\left (-\frac {x^{2}}{y^{2}}+\frac {x}{y^{2}+x^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

2.056

1243

\[ {}x y^{\prime } = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.021

1244

\[ {}y^{\prime } = \frac {x}{x^{2}+y+y^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.331

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

2.082

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.862

1247

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.096

1248

\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 x y} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.742

1249

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.851

1250

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.797

1251

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.849

1252

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.829

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.421

1254

\[ {}4 y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

2.191

1255

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.075

1256

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.024

1257

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.421

1258

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.449

1259

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.185

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.883

1261

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.573

1262

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.518

1263

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.479

1264

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.523

1265

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.509

1266

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.091

1267

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.918

1268

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.971

1269

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

0.724

1270

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

0.973

1271

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.934

1272

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.931

1273

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.337

1274

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

2.063

1275

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

0.834

1276

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.262

1277

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

1.791

1278

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2.007

1279

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1.525

1280

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

0.842

1281

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1.313

1282

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1.646

1283

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.637

1284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.215

1285

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.014

1286

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.041

1287

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.221

1288

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.236

1289

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.184

1290

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.845

1291

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.151

1292

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.297

1293

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.312

1294

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.368

1295

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

2.086

1296

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.244

1297

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.231

1298

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

2.529

1299

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1.171

1300

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

2.025