2.2.129 Problems 12801 to 12900

Table 2.259: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12801

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.428

12802

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.913

12803

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.102

12804

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

30.466

12805

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

73.901

12806

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

[[_2nd_order, _missing_x]]

37.810

12807

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

36.170

12808

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

75.533

12809

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

78.485

12810

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

80.365

12811

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

82.543

12812

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

24.681

12813

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

80.782

12814

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

77.950

12815

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

74.796

12816

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.604

12817

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

1.566

12818

\[ {}x^{\prime \prime }+x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

2.030

12819

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.613

12820

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.979

12821

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.466

12822

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

76.629

12823

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.830

12824

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.741

12825

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

1.800

12826

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.508

12827

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

74.090

12828

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.422

12829

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

32.922

12830

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

[[_Emden, _Fowler]]

1.072

12831

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

[[_Emden, _Fowler]]

1.132

12832

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.356

12833

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.190

12834

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

[[_Emden, _Fowler]]

1.170

12835

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.638

12836

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

1.147

12837

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]
i.c.

[[_Emden, _Fowler]]

2.566

12838

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

2.049

12839

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.062

12840

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.146

12841

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.139

12842

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.993

12843

\[ {}x^{\prime \prime }+x = \frac {1}{t +1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.176

12844

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.187

12845

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

[[_2nd_order, _missing_y]]

1.117

12846

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

1.796

12847

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.422

12848

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.351

12849

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

[_Hermite]

0.345

12850

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

[[_2nd_order, _missing_x]]

0.341

12851

\[ {}x^{\prime \prime }-\frac {\left (t +2\right ) x^{\prime }}{t}+\frac {\left (t +2\right ) x}{t^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.332

12852

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.383

12853

\[ {}x^{\prime \prime \prime }+x^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.066

12854

\[ {}x^{\prime \prime \prime }+x^{\prime } = 1 \]

[[_3rd_order, _missing_x]]

0.097

12855

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.061

12856

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

0.115

12857

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

[[_3rd_order, _missing_y]]

0.135

12858

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

[[_3rd_order, _missing_x]]

0.078

12859

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.590

12860

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.443

12861

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.393

12862

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.279

12863

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.300

12864

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.338

12865

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.204

12866

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.349

12867

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

12868

\[ {}x^{\prime \prime }-2 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.298

12869

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.389

12870

\[ {}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

12871

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.437

12872

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.563

12873

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (-t +1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.707

12874

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.628

12875

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.315

12876

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.597

12877

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

12878

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

12879

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.207

12880

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.513

12881

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.641

12882

\[ {}x^{\prime \prime }+4 x = \frac {\left (t -5\right ) \operatorname {Heaviside}\left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.061

12883

\[ {}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=2 x \end {array}\right ] \]

system_of_ODEs

0.413

12884

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=-4 x \end {array}\right ] \]

system_of_ODEs

0.408

12885

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x \\ y^{\prime }=2 y \end {array}\right ] \]

system_of_ODEs

0.264

12886

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=2 y \end {array}\right ] \]

system_of_ODEs

0.273

12887

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.297

12888

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.354

12889

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.322

12890

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=2 x-y \end {array}\right ] \]

system_of_ODEs

0.379

12891

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-3 y \\ y^{\prime }=-x+4 y \end {array}\right ] \]

system_of_ODEs

0.559

12892

\[ {}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=-2 x+y \end {array}\right ] \]

system_of_ODEs

0.374

12893

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.297

12894

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-y \\ y^{\prime }=-4 y \end {array}\right ] \]

system_of_ODEs

0.316

12895

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=-2 x+4 y \end {array}\right ] \]

system_of_ODEs

0.333

12896

\[ {}\left [\begin {array}{c} x^{\prime }=-6 y \\ y^{\prime }=6 y \end {array}\right ] \]

system_of_ODEs

0.289

12897

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+3 y \\ y^{\prime }=-x-14 \end {array}\right ] \]

system_of_ODEs

1.035

12898

\[ {}\left [\begin {array}{c} x^{\prime }=3 y-3 x \\ y^{\prime }=x+2 y-1 \end {array}\right ] \]

system_of_ODEs

0.826

12899

\[ {}\left [\begin {array}{c} x^{\prime }=y-x \\ y^{\prime }=-3 y \end {array}\right ] \]

system_of_ODEs

0.320

12900

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=3 x-4 y \end {array}\right ] \]

system_of_ODEs

0.326