2.2.128 Problems 12701 to 12800

Table 2.257: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12701

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

1.596

12702

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

2.819

12703

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

0.941

12704

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

[[_2nd_order, _missing_x]]

1.291

12705

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

0.937

12706

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

1.085

12707

\[ {}2 t x^{\prime } = x \]

[_separable]

1.673

12708

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

[[_Emden, _Fowler]]

0.722

12709

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

[[_2nd_order, _missing_x]]

0.854

12710

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

1.649

12711

\[ {}x^{\prime } = x^{2}+t^{2} \]

[[_Riccati, _special]]

1.017

12712

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

0.655

12713

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]
i.c.

[_quadrature]

0.577

12714

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

1.779

12715

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

0.336

12716

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

0.286

12717

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

0.431

12718

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

0.642

12719

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

1.545

12720

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

1.331

12721

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

1.374

12722

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

1.016

12723

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

1.014

12724

\[ {}x^{\prime } = a x+b \]

[_quadrature]

0.778

12725

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

1.496

12726

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

0.951

12727

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

0.709

12728

\[ {}x^{\prime } = \frac {2 x}{t +1} \]

[_separable]

1.646

12729

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

1.820

12730

\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

[_separable]

2.346

12731

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

[_separable]

2.094

12732

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

15.523

12733

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

[_separable]

1.158

12734

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

1.444

12735

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

2.341

12736

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

2.134

12737

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

3.002

12738

\[ {}x^{\prime } = x \left (4+x\right ) \]
i.c.

[_quadrature]

2.297

12739

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

3.328

12740

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

2.197

12741

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]
i.c.

[_separable]

1.858

12742

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

2.700

12743

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

1.873

12744

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

3.042

12745

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

3.256

12746

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.911

12747

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.619

12748

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

1.021

12749

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.368

12750

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

1.863

12751

\[ {}x^{\prime } = 2 t^{3} x-6 \]

[_linear]

1.393

12752

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

[_separable]

2.408

12753

\[ {}x^{\prime } = t -x^{2} \]

[[_Riccati, _special]]

0.961

12754

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

[_linear]

1.102

12755

\[ {}x x^{\prime } = 1-x t \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.657

12756

\[ {}{x^{\prime }}^{2}+x t = \sqrt {t +1} \]

[‘y=_G(x,y’)‘]

3.862

12757

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

1.338

12758

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.021

12759

\[ {}x^{\prime }+2 x t = {\mathrm e}^{-t^{2}} \]

[_linear]

1.378

12760

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

1.273

12761

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{t b} \]

[[_linear, ‘class A‘]]

0.925

12762

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t \]

[_separable]

1.313

12763

\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \]
i.c.

[_linear]

1.528

12764

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

1.142

12765

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]
i.c.

[_linear]

1.711

12766

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.083

12767

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

2.207

12768

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1.452

12769

\[ {}y^{\prime }+a y = \sqrt {t +1} \]

[[_linear, ‘class A‘]]

1.255

12770

\[ {}x^{\prime } = 2 x t \]

[_separable]

1.165

12771

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]
i.c.

[_linear]

2.005

12772

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

1.511

12773

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.499

12774

\[ {}x^{\prime } = a x+b \]

[_quadrature]

0.736

12775

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

1.139

12776

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.968

12777

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.348

12778

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

3.672

12779

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.587

12780

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

1.894

12781

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

[_Bernoulli]

1.221

12782

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

1.773

12783

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

[_exact]

1.520

12784

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

[NONE]

28.273

12785

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

1.533

12786

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

2.194

12787

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

2.127

12788

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.158

12789

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.413

12790

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.190

12791

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.412

12792

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.178

12793

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.750

12794

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.197

12795

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.431

12796

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.148

12797

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.796

12798

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.205

12799

\[ {}x^{\prime \prime }-12 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.895

12800

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.836