2.2.118 Problems 11701 to 11800

Table 2.237: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11701

\[ {}a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s = 0 \]

[_rational, _Riccati]

4.184

11702

\[ {}\left (x^{2} a +b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

3.961

11703

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+c \,x^{m}+d \]

[_Riccati]

3.183

11704

\[ {}\left (a \,x^{n}+b \right ) y^{\prime } = b y^{2}+a \,x^{n -2} \]

[_rational, _Riccati]

4.177

11705

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{n -2}+b m \left (m -1\right ) x^{m -2} = 0 \]

[_rational, _Riccati]

5.622

11706

\[ {}y^{\prime } = y^{2} a +b y+c x +k \]

[_Riccati]

1.475

11707

\[ {}y^{\prime } = y^{2}+a \,x^{n} y+a \,x^{n -1} \]

[_Riccati]

2.700

11708

\[ {}y^{\prime } = y^{2}+a \,x^{n} y+b \,x^{n -1} \]

[_Riccati]

3.353

11709

\[ {}y^{\prime } = y^{2}+\left (\alpha x +\beta \right ) y+x^{2} a +b x +c \]

[_Riccati]

38.499

11710

\[ {}y^{\prime } = y^{2}+a \,x^{n} y-a b \,x^{n}-b^{2} \]

[_Riccati]

3.606

11711

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +m +1}-a \,x^{m} \]

[_Riccati]

4.347

11712

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+b c \,x^{m}-a \,c^{2} x^{n} \]

[_Riccati]

4.779

11713

\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \]

[_Riccati]

7.045

11714

\[ {}y^{\prime } = -a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \]

[_Riccati]

6.848

11715

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{k -1}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \]

[_Riccati]

7.751

11716

\[ {}x y^{\prime } = y^{2} a +b y+c \,x^{2 b} \]

[_rational, _Riccati]

1.896

11717

\[ {}x y^{\prime } = y^{2} a +b y+c \,x^{n} \]

[_rational, _Riccati]

2.133

11718

\[ {}x y^{\prime } = y^{2} a +\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \]

[_rational, _Riccati]

3.258

11719

\[ {}x y^{\prime } = x y^{2}+a y+b \,x^{n} \]

[_rational, _Riccati]

2.068

11720

\[ {}x y^{\prime }+a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0} = 0 \]

[_rational, _Riccati]

5.704

11721

\[ {}x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{-n} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.760

11722

\[ {}x y^{\prime } = a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \]

[_rational, _Riccati]

2.371

11723

\[ {}x y^{\prime } = x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \]

[_rational, _Riccati]

2.354

11724

\[ {}x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{m} \]

[_rational, _Riccati]

2.683

11725

\[ {}x y^{\prime } = a \,x^{2 n} y^{2}+\left (b \,x^{n}-n \right ) y+c \]

[_rational, _Riccati]

3.693

11726

\[ {}x y^{\prime } = a \,x^{2 n +m} y^{2}+\left (b \,x^{m +n}-n \right ) y+c \,x^{m} \]

[_rational, _Riccati]

36.730

11727

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

18.160

11728

\[ {}\left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

3.281

11729

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+x y-2 a^{2} x \]

[_rational, _Riccati]

1.525

11730

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+3 x y-2 a^{2} x \]

[_rational, _Riccati]

1.822

11731

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.365

11732

\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (x^{2} a +b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \]

[_rational, _Riccati]

6.519

11733

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{n}+s \]

[_rational, _Riccati]

2.732

11734

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{2 n}+s \,x^{n} \]

[_rational, _Riccati]

3.829

11735

\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \]

[_rational, _Riccati]

8.530

11736

\[ {}x^{2} y^{\prime } = \left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y^{2}+\left (a \,x^{n}+b \right ) x y+c \,x^{2} \]

[_rational, _Riccati]

537.773

11737

\[ {}\left (x^{2}-1\right ) y^{\prime }+\lambda \left (y^{2}-2 x y+1\right ) = 0 \]

[_rational, _Riccati]

6.538

11738

\[ {}\left (x^{2} a +b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\frac {b \left (a +\beta \right )}{\alpha } = 0 \]

[_rational, _Riccati]

400.595

11739

\[ {}\left (x^{2} a +b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma = 0 \]

[_rational, _Riccati]

427.681

11740

\[ {}\left (x^{2} a +b \right ) y^{\prime }+y^{2}-2 x y+\left (-a +1\right ) x^{2}-b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.538

11741

\[ {}\left (x^{2} a +b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.771

11742

\[ {}\left (x^{2} a +b x +c \right ) y^{\prime } = y^{2}+\left (a x +\mu \right ) y-\lambda ^{2} x^{2}+\lambda \left (b -\mu \right ) x +\lambda c \]

[_rational, _Riccati]

457.832

11743

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \]

[_rational, _Riccati]

51.717

11744

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y+a_{0} x^{2}+b_{0} x +c_{0} \]

[_rational, _Riccati]

44.242

11745

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.951

11746

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b_{1} x +a_{1} \right ) y+a_{0} = 0 \]

[_rational, _Riccati]

18.652

11747

\[ {}x^{3} y^{\prime } = a \,x^{3} y^{2}+\left (b \,x^{2}+c \right ) y+s x \]

[_rational, _Riccati]

10.506

11748

\[ {}x^{3} y^{\prime } = a \,x^{3} y^{2}+x \left (b x +c \right ) y+\alpha x +\beta \]

[_rational, _Riccati]

4.954

11749

\[ {}x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x = 0 \]

[_rational, _Riccati]

4.924

11750

\[ {}x^{2} \left (x +a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+\alpha x +\beta = 0 \]

[_rational, _Riccati]

5.718

11751

\[ {}\left (x^{2} a +b x +e \right ) \left (-y+x y^{\prime }\right )-y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.751

11752

\[ {}x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s = 0 \]

[_rational, _Riccati]

7.302

11753

\[ {}a \left (x^{2}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+b x \left (x^{2}-1\right ) y+c \,x^{2}+d x +s = 0 \]

[_rational, _Riccati]

5.204

11754

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+b \,x^{n} y+c \,x^{m}+d \]

[_Riccati]

3.859

11755

\[ {}x \left (a \,x^{k}+b \right ) y^{\prime } = \alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \]

[_rational, _Riccati]

40.350

11756

\[ {}x^{2} \left (a \,x^{n}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (p \,x^{n}+q \right ) x y+r \,x^{n}+s = 0 \]

[_rational, _Riccati]

21.321

11757

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = c y^{2}-b \,x^{m -1} y+a \,x^{n -2} \]

[_rational, _Riccati]

93.551

11758

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = a \,x^{n -2} y^{2}+b \,x^{m -1} y+c \]

[_rational, _Riccati]

83.558

11759

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = \alpha \,x^{k} y^{2}+\beta \,x^{s} y-\alpha \,\lambda ^{2} x^{k}+\beta \lambda \,x^{s} \]

[_rational, _Riccati]

129.325

11760

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (-y+x y^{\prime }\right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

40.727

11761

\[ {}y^{\prime } = y^{2} a +b \,{\mathrm e}^{\lambda x} \]

[_Riccati]

1.475

11762

\[ {}y^{\prime } = y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

2.096

11763

\[ {}y^{\prime } = \sigma y^{2}+a +b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \lambda x} \]

[_Riccati]

3.280

11764

\[ {}y^{\prime } = \sigma y^{2}+a y+b \,{\mathrm e}^{x}+c \]

[_Riccati]

2.024

11765

\[ {}y^{\prime } = y^{2}+b y+a \left (\lambda -b \right ) {\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

2.599

11766

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \]

[_Riccati]

2.166

11767

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \]

[_Riccati]

5.774

11768

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{8 \lambda x}+b \,{\mathrm e}^{6 \lambda x}+c \,{\mathrm e}^{4 \lambda x}-\lambda ^{2} \]

[_Riccati]

7.751

11769

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \]

[_Riccati]

2.647

11770

\[ {}y^{\prime } = b \,{\mathrm e}^{\mu x} y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

[_Riccati]

4.508

11771

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

2.407

11772

\[ {}y^{\prime } = a \,{\mathrm e}^{\mu x} y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

[_Riccati]

2.276

11773

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

[_Riccati]

3.358

11774

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

[_Riccati]

3.280

11775

\[ {}y^{\prime } = a \,{\mathrm e}^{\mu x} y^{2}+a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x} y-b \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

421.163

11776

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{s x}+d \,{\mathrm e}^{-k x} \]

[_Riccati]

3.651

11777

\[ {}y^{\prime } = a \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} y^{2}+\left (b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}-\lambda \right ) y+c \,{\mathrm e}^{\mu x} \]

[_Riccati]

3.377

11778

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{k n x}+d \,{\mathrm e}^{k \left (2 n +1\right ) x} \]

[_Riccati]

5.005

11779

\[ {}y^{\prime } = {\mathrm e}^{\mu x} \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.524

11780

\[ {}\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime } = y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \]

[_Riccati]

73.860

11781

\[ {}\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} {\mathrm e}^{\lambda x}+b \,\mu ^{2} {\mathrm e}^{\mu x} = 0 \]

[_Riccati]

4.616

11782

\[ {}y^{\prime } = y^{2}+a x \,{\mathrm e}^{\lambda x} y+a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

2.456

11783

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

2.171

11784

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b n \,x^{n -1}-a \,b^{2} {\mathrm e}^{\lambda x} x^{2 n} \]

[_Riccati]

6.925

11785

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \]

[_Riccati]

4.819

11786

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,x^{n} {\mathrm e}^{\lambda x} y-a \,x^{n} \]

[_Riccati]

3.177

11787

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \]

[_Riccati]

4.330

11788

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

6.171

11789

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda y-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

3.053

11790

\[ {}y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

5.936

11791

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} {\mathrm e}^{\lambda x} y-a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

3.751

11792

\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \]

[_Riccati]

6.789

11793

\[ {}y^{\prime } = a \,x^{n} {\mathrm e}^{2 \lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-\lambda \right ) y+c \,x^{n} \]

[_Riccati]

5.678

11794

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

3.869

11795

\[ {}x y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \]

[_Riccati]

3.197

11796

\[ {}x y^{\prime } = a \,x^{2 n} {\mathrm e}^{\lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-n \right ) y+c \,{\mathrm e}^{\lambda x} \]

[_Riccati]

19.308

11797

\[ {}y^{\prime } = y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} {\mathrm e}^{2 \lambda \,x^{2}} \]

[_Riccati]

2.985

11798

\[ {}y^{\prime } = a \,{\mathrm e}^{-\lambda \,x^{2}} y^{2}+\lambda x y+b^{2} a \]

[_Riccati]

2.051

11799

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda x y+a \,b^{2} x^{n} {\mathrm e}^{\lambda \,x^{2}} \]

[_Riccati]

3.227

11800

\[ {}x^{4} \left (y^{\prime }-y^{2}\right ) = a +b \,{\mathrm e}^{\frac {k}{x}}+c \,{\mathrm e}^{\frac {2 k}{x}} \]

[_Riccati]

3.958