# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
3.416 |
|
\[
{}y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
7.291 |
|
\[
{}y^{\prime \prime } = 2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✗ |
0.488 |
|
\[
{}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
7.910 |
|
\[
{}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.204 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.293 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
0.315 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.288 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b x \,{\mathrm e}^{y} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.282 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.302 |
|
\[
{}x y^{\prime \prime }+\left (-1+y\right ) y^{\prime } = 0
\] |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.918 |
|
\[
{}x y^{\prime \prime }-x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.281 |
|
\[
{}x y^{\prime \prime }+a \left (y^{\prime } x -y\right )^{2}-b = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.290 |
|
\[
{}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
1.412 |
|
\[
{}x^{2} y^{\prime \prime } = a \left (y^{n}-y\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.310 |
|
\[
{}x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.324 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.516 |
|
\[
{}x^{2} y^{\prime \prime }+a \left (y^{\prime } x -y\right )^{2}-b \,x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.276 |
|
\[
{}x^{2} y^{\prime \prime }+a y {y^{\prime }}^{2}+b x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.245 |
|
\[
{}x^{2} y^{\prime \prime }-\sqrt {a \,x^{2} {y^{\prime }}^{2}+b y^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.374 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.968 |
|
\[
{}4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.259 |
|
\[
{}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.277 |
|
\[
{}x^{3} \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )+12 x y+24 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.299 |
|
\[
{}x^{3} y^{\prime \prime }-a \left (y^{\prime } x -y\right )^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.287 |
|
\[
{}2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.318 |
|
\[
{}2 \left (-x^{k}+4 x^{3}\right ) \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )-\left (k \,x^{k -1}-12 x^{2}\right ) \left (3 y^{\prime }+y^{2}\right )+y a x +b = 0
\] |
[NONE] |
✗ |
0.556 |
|
\[
{}x^{4} y^{\prime \prime }+a^{2} y^{n} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
0.257 |
|
\[
{}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.267 |
|
\[
{}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.278 |
|
\[
{}x^{4} y^{\prime \prime }+\left (y^{\prime } x -y\right )^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.285 |
|
\[
{}\sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
0.298 |
|
\[
{}\left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right ) = 0
\] |
[NONE] |
✗ |
10.287 |
|
\[
{}y y^{\prime \prime }-a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.003 |
|
\[
{}y y^{\prime \prime }-a x = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
0.243 |
|
\[
{}y y^{\prime \prime }-a \,x^{2} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
0.234 |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
2.734 |
|
\[
{}y y^{\prime \prime }+y^{2}-a x -b = 0
\] |
[NONE] |
✗ |
0.253 |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.252 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.474 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.582 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0
\] |
[NONE] |
✗ |
0.459 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
4.411 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0
\] |
[NONE] |
✗ |
0.393 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-f^{\prime \prime }\left (x \right ) y+f \left (x \right ) y^{3}-y^{4} = 0
\] |
[NONE] |
✗ |
0.465 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
2.097 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
4.535 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
6.193 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
9.775 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0
\] |
[[_2nd_order, _reducible, _mu_xy]] |
✗ |
4.779 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.388 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+y^{2} f \left (x \right )\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0
\] |
[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.497 |
|
\[
{}y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
19.406 |
|
\[
{}y y^{\prime \prime }-a {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.481 |
|
\[
{}y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.912 |
|
\[
{}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
3.897 |
|
\[
{}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{1-a} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✗ |
172.875 |
|
\[
{}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
5.350 |
|
\[
{}y y^{\prime \prime }-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (a +2\right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{a +2} = 0
\] |
[NONE] |
✗ |
0.554 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0
\] |
[[_2nd_order, _missing_x]] |
✗ |
37.171 |
|
\[
{}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0
\] |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
3.993 |
|
\[
{}y^{\prime \prime } \left (x -y\right )+2 y^{\prime } \left (y^{\prime }+1\right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✗ |
0.246 |
|
\[
{}y^{\prime \prime } \left (x -y\right )-\left (y^{\prime }+1\right ) \left (1+{y^{\prime }}^{2}\right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✗ |
0.267 |
|
\[
{}y^{\prime \prime } \left (x -y\right )-h \left (y^{\prime }\right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✗ |
0.552 |
|
\[
{}2 y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.858 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+a = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.406 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+y^{2} f \left (x \right )+a = 0
\] |
[NONE] |
✗ |
0.380 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
149.893 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
70.450 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 \left (x +2 y\right ) y^{2} = 0
\] |
[NONE] |
✗ |
0.274 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b +a y\right ) y^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
12.414 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0
\] |
[NONE] |
✗ |
0.290 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0
\] |
[NONE] |
✗ |
0.280 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.881 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0
\] |
[[_Painleve, ‘4th‘]] |
✗ |
0.342 |
|
\[
{}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.518 |
|
\[
{}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
2.672 |
|
\[
{}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+y^{2} f \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.343 |
|
\[
{}2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+\left (1+a y^{3}\right ) y^{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.454 |
|
\[
{}2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
2.606 |
|
\[
{}2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.815 |
|
\[
{}3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c = 0
\] |
[NONE] |
✗ |
0.309 |
|
\[
{}3 y y^{\prime \prime }-5 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.679 |
|
\[
{}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.105 |
|
\[
{}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
20.967 |
|
\[
{}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
4.455 |
|
\[
{}4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
3.280 |
|
\[
{}12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.647 |
|
\[
{}n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.540 |
|
\[
{}a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
7.612 |
|
\[
{}a y y^{\prime \prime }+b {y^{\prime }}^{2}-\frac {y y^{\prime }}{\sqrt {c^{2}+x^{2}}} = 0
\] |
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.565 |
|
\[
{}\left (b +a y\right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.548 |
|
\[
{}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0
\] |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.232 |
|
\[
{}x y y^{\prime \prime }+x {y^{\prime }}^{2}+a y y^{\prime }+f \left (x \right ) = 0
\] |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.364 |
|
\[
{}x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right ) = 0
\] |
[[_Painleve, ‘3rd‘]] |
✗ |
0.347 |
|
\[
{}x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+b x y^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.291 |
|
\[
{}x y y^{\prime \prime }+2 x {y^{\prime }}^{2}+a y y^{\prime } = 0
\] |
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.930 |
|
\[
{}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
0.257 |
|
\[
{}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+a y y^{\prime } = 0
\] |
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.443 |
|
\[
{}x y y^{\prime \prime }-4 x {y^{\prime }}^{2}+4 y y^{\prime } = 0
\] |
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.658 |
|