2.2.117 Problems 11601 to 11700

Table 2.235: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11601

\[ {}y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.416

11602

\[ {}y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.291

11603

\[ {}y^{\prime \prime } = 2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.488

11604

\[ {}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0 \]

[[_2nd_order, _missing_x]]

7.910

11605

\[ {}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x]]

1.204

11606

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.293

11607

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.315

11608

\[ {}x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.288

11609

\[ {}x y^{\prime \prime }+a y^{\prime }+b x \,{\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.282

11610

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.302

11611

\[ {}x y^{\prime \prime }+\left (-1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.918

11612

\[ {}x y^{\prime \prime }-x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.281

11613

\[ {}x y^{\prime \prime }+a \left (y^{\prime } x -y\right )^{2}-b = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.290

11614

\[ {}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.412

11615

\[ {}x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.310

11616

\[ {}x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.324

11617

\[ {}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.516

11618

\[ {}x^{2} y^{\prime \prime }+a \left (y^{\prime } x -y\right )^{2}-b \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.276

11619

\[ {}x^{2} y^{\prime \prime }+a y {y^{\prime }}^{2}+b x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.245

11620

\[ {}x^{2} y^{\prime \prime }-\sqrt {a \,x^{2} {y^{\prime }}^{2}+b y^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.374

11621

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.968

11622

\[ {}4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.259

11623

\[ {}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.277

11624

\[ {}x^{3} \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )+12 x y+24 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.299

11625

\[ {}x^{3} y^{\prime \prime }-a \left (y^{\prime } x -y\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.287

11626

\[ {}2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.318

11627

\[ {}2 \left (-x^{k}+4 x^{3}\right ) \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )-\left (k \,x^{k -1}-12 x^{2}\right ) \left (3 y^{\prime }+y^{2}\right )+y a x +b = 0 \]

[NONE]

0.556

11628

\[ {}x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.257

11629

\[ {}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.267

11630

\[ {}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.278

11631

\[ {}x^{4} y^{\prime \prime }+\left (y^{\prime } x -y\right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.285

11632

\[ {}\sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.298

11633

\[ {}\left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right ) = 0 \]

[NONE]

10.287

11634

\[ {}y y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.003

11635

\[ {}y y^{\prime \prime }-a x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.243

11636

\[ {}y y^{\prime \prime }-a \,x^{2} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.234

11637

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.734

11638

\[ {}y y^{\prime \prime }+y^{2}-a x -b = 0 \]

[NONE]

0.253

11639

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.252

11640

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.474

11641

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.582

11642

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \]

[NONE]

0.459

11643

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.411

11644

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0 \]

[NONE]

0.393

11645

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-f^{\prime \prime }\left (x \right ) y+f \left (x \right ) y^{3}-y^{4} = 0 \]

[NONE]

0.465

11646

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.097

11647

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

4.535

11648

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y = 0 \]

[[_2nd_order, _missing_x]]

6.193

11649

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \]

[[_2nd_order, _missing_x]]

9.775

11650

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _reducible, _mu_xy]]

4.779

11651

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.388

11652

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+y^{2} f \left (x \right )\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0 \]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.497

11653

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19.406

11654

\[ {}y y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.481

11655

\[ {}y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.912

11656

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

3.897

11657

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{1-a} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

172.875

11658

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \]

[[_2nd_order, _missing_x]]

5.350

11659

\[ {}y y^{\prime \prime }-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (a +2\right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{a +2} = 0 \]

[NONE]

0.554

11660

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x]]

37.171

11661

\[ {}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3.993

11662

\[ {}y^{\prime \prime } \left (x -y\right )+2 y^{\prime } \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.246

11663

\[ {}y^{\prime \prime } \left (x -y\right )-\left (y^{\prime }+1\right ) \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.267

11664

\[ {}y^{\prime \prime } \left (x -y\right )-h \left (y^{\prime }\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.552

11665

\[ {}2 y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.858

11666

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.406

11667

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+y^{2} f \left (x \right )+a = 0 \]

[NONE]

0.380

11668

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

149.893

11669

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x]]

70.450

11670

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 \left (x +2 y\right ) y^{2} = 0 \]

[NONE]

0.274

11671

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b +a y\right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

12.414

11672

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0 \]

[NONE]

0.290

11673

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0 \]

[NONE]

0.280

11674

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4} = 0 \]

[[_2nd_order, _missing_x]]

1.881

11675

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0 \]

[[_Painleve, ‘4th‘]]

0.342

11676

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.518

11677

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.672

11678

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.343

11679

\[ {}2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+\left (1+a y^{3}\right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

2.454

11680

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.606

11681

\[ {}2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.815

11682

\[ {}3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c = 0 \]

[NONE]

0.309

11683

\[ {}3 y y^{\prime \prime }-5 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.679

11684

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _missing_x]]

2.105

11685

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

20.967

11686

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0 \]

[[_2nd_order, _missing_x]]

4.455

11687

\[ {}4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3.280

11688

\[ {}12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

1.647

11689

\[ {}n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.540

11690

\[ {}a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0} = 0 \]

[[_2nd_order, _missing_x]]

7.612

11691

\[ {}a y y^{\prime \prime }+b {y^{\prime }}^{2}-\frac {y y^{\prime }}{\sqrt {c^{2}+x^{2}}} = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.565

11692

\[ {}\left (b +a y\right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.548

11693

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.232

11694

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+a y y^{\prime }+f \left (x \right ) = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.364

11695

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right ) = 0 \]

[[_Painleve, ‘3rd‘]]

0.347

11696

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+b x y^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.291

11697

\[ {}x y y^{\prime \prime }+2 x {y^{\prime }}^{2}+a y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.930

11698

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.257

11699

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+a y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.443

11700

\[ {}x y y^{\prime \prime }-4 x {y^{\prime }}^{2}+4 y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.658