Chapter 1
Lookup tables for all problems in current book

1.1 Chapter 3. Solutions of first-order equations. Exercises at page 47
1.2 Chapter 4. Autonomous systems. Exercises at page 69
1.3 Chapter 5. Linear equations. Exercises at page 85

1.1 Chapter 3. Solutions of first-order equations. Exercises at page 47

Table 1.1: Lookup table

ID

problem

ODE

18409

1 (i)

\(x^{\prime } = 3 t^{2}+4 t\)

18410

1 (ii)

\(x^{\prime } = b \,{\mathrm e}^{t}\)

18411

1 (iii)

\(x^{\prime } = \frac {1}{t^{2}+1}\)

18412

1 (iv)

\(x^{\prime } = \frac {1}{\sqrt {t^{2}+1}}\)

18413

1 (v)

\(x^{\prime } = \cos \left (t \right )\)

18414

1 (vi)

\(x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )}\)

18415

2 (i)

\(x^{\prime } = x^{2}-3 x+2\)

18416

2 (ii)

\(x^{\prime } = b \,{\mathrm e}^{x}\)

18417

2 (iii)

\(x^{\prime } = \left (x-1\right )^{2}\)

18418

2 (iv)

\(x^{\prime } = \sqrt {x^{2}-1}\)

18419

2 (v)

\(x^{\prime } = 2 \sqrt {x}\)

18420

2 (vi)

\(x^{\prime } = \tan \left (x\right )\)

18421

3 (i)

\(3 t^{2} x-t x+\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0\)

18422

3 (ii)

\(1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0\)

18423

3 (iii)

\(x^{\prime } = \cos \left (\frac {x}{t}\right )\)

18424

3 (iv)

\(\left (t^{2}-x^{2}\right ) x^{\prime } = t x\)

18425

3 (v)

\({\mathrm e}^{3 t} x^{\prime }+3 x \,{\mathrm e}^{3 t} = 2 t\)

18426

3 (vi)

\(2 t +3 x+\left (3 t -x\right ) x^{\prime } = t^{2}\)

18427

4 (i)

\(x^{\prime }+2 x = {\mathrm e}^{t}\)

18428

4 (ii)

\(x^{\prime }+x \tan \left (t \right ) = 0\)

18429

4 (iii)

\(x^{\prime }-x \tan \left (t \right ) = 4 \sin \left (t \right )\)

18430

4 (iv)

\(t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x = t^{3}\)

18431

4 (v)

\(x^{\prime }+2 t x+t x^{4} = 0\)

18432

4 (vi)

\(t x^{\prime }+x \ln \left (t \right ) = t^{2}\)

18433

5

\(t x^{\prime }+x g \left (t \right ) = h \left (t \right )\)

18434

6

\(t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0\)

1.2 Chapter 4. Autonomous systems. Exercises at page 69

Table 1.3: Lookup table

ID

problem

ODE

18435

1

\(x^{\prime } = -\lambda x\)

18436

2

\([x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )]\)

18437

3

\(t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0\)

18438

5 (i)

\(x^{\prime \prime }-5 x^{\prime }+6 x = 0\)

18439

5 (ii)

\(x^{\prime \prime }-4 x^{\prime }+4 x = 0\)

18440

5 (iiI=i)

\(x^{\prime \prime }-4 x^{\prime }+5 x = 0\)

18441

5 (iv)

\(x^{\prime \prime }+3 x^{\prime } = 0\)

18442

6 (i)

\(x^{\prime \prime }-3 x^{\prime }+2 x = 0\)

18443

6 (ii)

\(x^{\prime \prime }+x = 0\)

18444

6 (iii)

\(x^{\prime \prime }+2 x^{\prime }+x = 0\)

18445

6 (iv)

\(x^{\prime \prime }-2 x^{\prime }+2 x = 0\)

1.3 Chapter 5. Linear equations. Exercises at page 85

Table 1.5: Lookup table

ID

problem

ODE

18446

7 (i)

\(x^{\prime \prime }-x = t^{2}\)

18447

7 (ii)

\(x^{\prime \prime }-x = {\mathrm e}^{t}\)

18448

7 (iii)

\(x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right )\)

18449

7 (iv)

\(x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right )\)

18450

7 (v)

\(x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right )\)

18451

7 (vi)

\(x^{\prime \prime }+x = \cos \left (t \right )\)