Internal
problem
ID
[18496] Book
:
Elementary
Differential
Equations.
By
R.L.E.
Schwarzenberger.
Chapman
and
Hall.
London.
First
Edition
(1969) Section
:
Chapter
3.
Solutions
of
first-order
equations.
Exercises
at
page
47 Problem
number
:
3
(vi) Date
solved
:
Saturday, February 22, 2025 at 09:17:54 PM CAS
classification
:
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]
Solve
\begin{align*} 2 t +3 x+\left (3 t -x\right ) x^{\prime }&=t^{2} \end{align*}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is
to write the ODE in standard form to check for exactness, which is
Since \(\frac {\partial M}{\partial x}= \frac {\partial N}{\partial t}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi \left (t,x\right )\)
Where \(f(x)\) is used for the constant of integration since \(\phi \) is a function of both \(t\) and \(x\). Taking derivative of equation (3) w.r.t \(x\) gives
Where \(c_1\) is constant of integration. Substituting result found above for \(f(x)\) into equation (3) gives \(\phi \)
\[
\phi = -\frac {t \left (t^{2}-3 t -9 x \right )}{3}-\frac {x^{2}}{2}+ c_1
\]
But since \(\phi \) itself is a constant function, then
let \(\phi =c_2\) where \(c_2\) is new constant and combining \(c_1\) and \(c_2\) constants into the constant \(c_1\) gives the solution as
\[
c_1 = -\frac {t \left (t^{2}-3 t -9 x \right )}{3}-\frac {x^{2}}{2}
\]
Solving for \(x\) gives
\begin{align*}
x &= 3 t -\frac {\sqrt {-6 t^{3}+99 t^{2}-18 c_1}}{3} \\
x &= 3 t +\frac {\sqrt {-6 t^{3}+99 t^{2}-18 c_1}}{3} \\
\end{align*}
Figure 2.31: Slope field \(2 t +3 x+\left (3 t -x\right ) x^{\prime } = t^{2}\)
Summary of solutions found
\begin{align*}
x &= 3 t -\frac {\sqrt {-6 t^{3}+99 t^{2}-18 c_1}}{3} \\
x &= 3 t +\frac {\sqrt {-6 t^{3}+99 t^{2}-18 c_1}}{3} \\
\end{align*}
`Methodsfor first order ODEs:---Trying classification methods ---tryinga quadraturetrying1st order lineartryingBernoullitryingseparabletryinginverse lineartryinghomogeneous types:tryingChinidifferentialorder: 1; looking for linear symmetriestryingexact<-exact successful`