2.13 Example 13 \(\left ( y^{\prime }\right ) ^{2}-4y=0\)

\begin{align*} \left ( y^{\prime }\right ) ^{2}-4y & =0\\ F & =p^{2}-4y\\ & =0 \end{align*}

This is quadratic in \(p\).

\begin{align*} b^{2}-4ac & =0\\ \left ( 0\right ) -4\left ( 1\right ) \left ( -4y\right ) & =0\\ y & =0 \end{align*}

We see this also satisfies the ode. Hence it is the envelope. The primitive can be found to be

\begin{align*} \Psi \left ( x,y,c\right ) & =y-\left ( x+c\right ) ^{2}=0\\ & =y-\left ( x^{2}+c^{2}+2xc\right ) =0\\ & =y-x^{2}-c^{2}-2xc=0 \end{align*}

This is quadratic in \(c\).

\begin{align*} b^{2}-4aC & =0\\ \left ( -2x\right ) ^{2}-4\left ( -1\right ) \left ( y-x^{2}\right ) & =0\\ 4x^{2}+4y-4x^{2} & =0\\ y & =0 \end{align*}

This is the same as found by p-discriminant method then this is the singular solution. The following plot shows the singular solution as the envelope of the family of general solution plotted using different values of \(c\).