We first check that \(\frac {\partial F}{\partial y}\neq 0\). Now we apply p-discriminant. Eliminating \(p\). Second equation gives \(p=-\frac {y}{2x}\ln y\).
Substituting into the first equation gives
\begin{align*} y & =0\\ y & =1\\ \frac {1}{4x}-\frac {1}{2x}-\left ( \ln y\right ) ^{2} & =0 \end{align*}
Or
\begin{align} y & =0\tag {1}\\ y & =1\tag {2}\\ 1+4x\left ( \ln y\right ) ^{2} & =0 \tag {3}\end{align}
The solution \(y=0\) does not satisfy the ode. But \(y=1\) does. The solution \(1+4x\left ( \ln y\right ) ^{2}=0\) gives \(y=\left \{ \begin {array} [c]{c}e^{\frac {-i}{2\sqrt {x}}}\\ e^{\frac {i}{2\sqrt {x}}}\end {array} \right . \) But these do not
satisfy the ode.
These do not satisfy the ode. Can not obtain \(y=1\) solution using c-discriminant.
See paper by C.N. SRINIVASINGAR, example 4. The following plot shows the singular
solution above as the envelope of the family of general solution plotted using different values
of \(c\). Added also \(y_{s}=1\).