2.9 ODE No. 9
\[ y'(x)-y(x) (a+\sin (\log (x))+\cos (\log (x)))=0 \]
✓ Mathematica : cpu = 0.0280613 (sec), leaf count = 19
DSolve[-((a + Cos[Log[x]] + Sin[Log[x]])*y[x]) + Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 e^{a x+x \sin (\log (x))}\right \}\right \}\]
✓ Maple : cpu = 0.015 (sec), leaf count = 14
dsolve(diff(y(x),x)-(sin(ln(x))+cos(ln(x))+a)*y(x) = 0,y(x))
\[y \left (x \right ) = c_{1} {\mathrm e}^{x \left (\sin \left (\ln \left (x \right )\right )+a \right )}\]
Hand solution
\begin{equation} \frac {dy}{dx}-y\left ( x\right ) \left [ a+\sin \left ( \log \left ( x\right ) \right ) +\cos \left ( \log \left ( x\right ) \right ) \right ] =0\tag {1}\end{equation}
Integrating factor \(\mu =e^{-\int a-\sin \left ( \log \left ( x\right ) \right ) -\cos \left ( \log \left ( x\right ) \right ) dx}=e^{-ax}e^{-\int \sin \left ( \log \left ( x\right ) \right ) +\cos \left ( \log \left ( x\right ) \right ) dx}\). To integrate \(\int \sin \left ( \log \left ( x\right ) \right ) +\cos \left ( \log \left ( x\right ) \right ) dx\), let \(r=\log \left ( x\right ) \), \(\frac {dr}{dx}=\frac {1}{x}\), then \(dx=xdr\), But \(x=e^{r}\), hence the integral becomes
\begin{align} \int \sin \left ( \log \left ( x\right ) \right ) +\cos \left ( \log \left ( x\right ) \right ) dx & =\int \left [ \sin \left ( r\right ) +\cos \left ( r\right ) \right ] e^{r}dr\nonumber \\ & =\int e^{r}\sin \left ( r\right ) dr+\int e^{r}\cos \left ( r\right ) dr\tag {2}\end{align}
Integrating by parts \(\int e^{r}\cos \left ( r\right ) dr,\) \(\int udv=uv-\int vdu\), Let \(u=e^{r}\rightarrow du=e^{r}\) and \(dv=\cos \left ( r\right ) \rightarrow v=\sin \left ( r\right ) \), hence (2) becomes
\begin{align*} \int e^{r}\sin \left ( r\right ) dr+\int e^{r}\cos \left ( r\right ) dr & =\int e^{r}\sin \left ( r\right ) dr+e^{r}\sin \left ( r\right ) -\int \sin \left ( r\right ) e^{r}dr\\ & =e^{r}\sin \left ( r\right ) \end{align*}
Therefore, substituting back \(r=\log \left ( x\right ) \) gives
\begin{align*} \int \sin \left ( \log \left ( x\right ) \right ) +\cos \left ( \log \left ( x\right ) \right ) dx & =e^{\log \left ( x\right ) }\sin \left ( \log \left ( x\right ) \right ) \\ & =x\sin \left ( \log \left ( x\right ) \right ) \end{align*}
Hence the integration factor is
\begin{align*} \mu & =e^{-ax}e^{-\int \sin \left ( \log \left ( x\right ) \right ) +\cos \left ( \log \left ( x\right ) \right ) dx}\\ & =e^{-ax}e^{-x\sin \left ( \log \left ( x\right ) \right ) }\end{align*}
Therefore (1) becomes
\[ \frac {d}{dx}\left ( \mu y\left ( x\right ) \right ) =0 \]
Integrating
\begin{align*} y\left ( x\right ) e^{-ax}e^{-x\sin \left ( \log \left ( x\right ) \right ) } & =C\\ y\left ( x\right ) & =Ce^{ax}e^{x\sin \left ( \log \left ( x\right ) \right ) }\\ & =Ce^{ax+x\sin \left ( \log \left ( x\right ) \right ) }\\ & =Ce^{x\left ( a+\sin \left ( \log \left ( x\right ) \right ) \right ) }\end{align*}