2.10 ODE No. 10
\[ y(x) f'(x)-f(x) f'(x)+y'(x)=0 \]
✓ Mathematica : cpu = 0.0280073 (sec), leaf count = 18
DSolve[-(f[x]*Derivative[1][f][x]) + y[x]*Derivative[1][f][x] + Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to f(x)+c_1 e^{-f(x)}-1\right \}\right \}\]
✓ Maple : cpu = 0.01 (sec), leaf count = 15
dsolve(diff(y(x),x)+diff(f(x),x)*y(x)-f(x)*diff(f(x),x) = 0,y(x))
\[y \left (x \right ) = f \left (x \right )-1+{\mathrm e}^{-f \left (x \right )} c_{1}\]
Hand solution
\begin{equation} \frac {dy}{dx}+y\left ( x\right ) \frac {df}{dx}=f\left ( x\right ) \frac {df}{dx} \tag {1}\end{equation}
Integrating factor \(\mu =e^{\int \frac {df}{dx}dx}=e^{f}\). Therefore (1) becomes
\[ \frac {d}{dx}\left ( e^{f}y\left ( x\right ) \right ) =e^{f}f\left ( x\right ) \frac {df}{dx}\]
Integrating
\begin{align*} e^{f}y\left ( x\right ) & =\int e^{f}f\left ( x\right ) \frac {df}{dx}dx+C\\ y\left ( x\right ) & =e^{-f}\int e^{f}fdf+e^{-f}C \end{align*}
But \(\int e^{f}fdf\) is the same as \(\int e^{x}xdx\) which by integration by parts gives \(e^{x}\left ( x-1\right ) \) or in terms of \(f\), gives \(e^{f}\left ( f-1\right ) \). Hence the
above becomes
\begin{align*} y\left ( x\right ) & =e^{-f}\left ( e^{f}\left ( f-1\right ) \right ) +e^{-f}C\\ & =f-1+e^{-f}C \end{align*}