2.856 ODE No. 856
\[ y'(x)=\frac {x \left (\text {$\_$F1}\left (y(x)^2-2 x\right )+\frac {1}{x}\right )}{\sqrt {y(x)^2}} \]
✓ Mathematica : cpu = 0.429133 (sec), leaf count = 103
DSolve[Derivative[1][y][x] == (x*(x^(-1) + _F1[-2*x + y[x]^2]))/Sqrt[y[x]^2],y[x],x]
\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {\sqrt {K[2]^2}}{\text {$\_$F1}\left (K[2]^2-2 x\right )}-\int _1^x\frac {2 K[2] \text {$\_$F1}'\left (K[2]^2-2 K[1]\right )}{\left (\text {$\_$F1}\left (K[2]^2-2 K[1]\right )\right ){}^2}dK[1]\right )dK[2]+\int _1^x\left (-K[1]-\frac {1}{\text {$\_$F1}\left (y(x)^2-2 K[1]\right )}\right )dK[1]=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.276 (sec), leaf count = 65
dsolve(diff(y(x),x) = -(-1/x-_F1(y(x)^2-2*x))/(y(x)^2)^(1/2)*x,y(x))
\[y \left (x \right ) = \sqrt {2 \operatorname {RootOf}\left (x^{2}-2 \left (\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_F1} \left (2 \textit {\_a} \right )}d \textit {\_a} \right )+4 c_{1} \right )+2 x}\]