2.855 ODE No. 855
\[ y'(x)=\frac {y(x) \left (x^3 \log ^2(y(x))+2 x^3 \log (x) \log (y(x))+x^3 \log ^2(x)+\log (y(x))+\log (x)-1\right )}{x} \]
✓ Mathematica : cpu = 0.118165 (sec), leaf count = 24
DSolve[Derivative[1][y][x] == ((-1 + Log[x] + x^3*Log[x]^2 + Log[y[x]] + 2*x^3*Log[x]*Log[y[x]] + x^3*Log[y[x]]^2)*y[x])/x,y[x],x]
\[\left \{\left \{y(x)\to \frac {e^{-\frac {4 x}{x^4+4 c_1}}}{x}\right \}\right \}\]
✓ Maple : cpu = 0.231 (sec), leaf count = 51
dsolve(diff(y(x),x) = y(x)*(ln(y(x))-1+ln(x)+x^3*ln(x)^2+2*x^3*ln(y(x))*ln(x)+x^3*ln(y(x))^2)/x,y(x))
\[y \left (x \right ) = x^{-\frac {x^{4}}{x^{4}+4 c_{1}}} x^{-\frac {4 c_{1}}{x^{4}+4 c_{1}}} {\mathrm e}^{-\frac {4 x}{x^{4}+4 c_{1}}}\]