2.829 ODE No. 829
\[ y'(x)=\frac {x^6 \sqrt {4 x^2 y(x)+1}+x^5 \sqrt {4 x^2 y(x)+1}+x^3 \sqrt {4 x^2 y(x)+1}+\frac {1}{2}}{x^3} \]
✓ Mathematica : cpu = 0.312827 (sec), leaf count = 74
DSolve[Derivative[1][y][x] == (1/2 + x^3*Sqrt[1 + 4*x^2*y[x]] + x^5*Sqrt[1 + 4*x^2*y[x]] + x^6*Sqrt[1 + 4*x^2*y[x]])/x^3,y[x],x]
\[\left \{\left \{y(x)\to \frac {16 x^{12}+40 x^{11}+25 x^{10}+80 x^9+100 x^8-160 c_1 x^7+100 x^6-200 c_1 x^6-400 c_1 x^4+400 c_1{}^2 x^2-100}{400 x^2}\right \}\right \}\]
✓ Maple : cpu = 0.391 (sec), leaf count = 34
dsolve(diff(y(x),x) = 1/2*(1+2*(4*x^2*y(x)+1)^(1/2)*x^3+2*x^5*(4*x^2*y(x)+1)^(1/2)+2*x^6*(4*x^2*y(x)+1)^(1/2))/x^3,y(x))
\[c_{1} -\frac {\sqrt {4 x^{2} y \left (x \right )+1}}{x}+x^{2}+\frac {x^{4}}{2}+\frac {2 x^{5}}{5} = 0\]