2.828   ODE No. 828

\[ y'(x)=\frac {(y(x)+1) (2 y(x)+1)}{x \left (2 x y(x)^4+x y(x)^3-2 y(x)-2\right )} \]

Mathematica : cpu = 0.373674 (sec), leaf count = 56

DSolve[Derivative[1][y][x] == ((1 + y[x])*(1 + 2*y[x]))/(x*(-2 - 2*y[x] + x*y[x]^3 + 2*x*y[x]^4)),y[x],x]
 
\[\text {Solve}\left [-\frac {1}{8} y(x)^2+\frac {3 y(x)}{8}-\frac {1}{2 x (2 y(x)+1)}-\frac {1}{2} \log (y(x)+1)+\frac {1}{16} \log (2 y(x)+1)=c_1,y(x)\right ]\]

Maple : cpu = 0.215 (sec), leaf count = 54

dsolve(diff(y(x),x) = 1/x*(1+2*y(x))*(1+y(x))/(-2*y(x)-2+x*y(x)^3+2*x*y(x)^4),y(x))
 
\[y \left (x \right ) = \frac {{\mathrm e}^{\operatorname {RootOf}\left (x \,{\mathrm e}^{3 \textit {\_Z}}-8 x \,{\mathrm e}^{2 \textit {\_Z}}+16 \ln \left (\frac {{\mathrm e}^{\textit {\_Z}}}{2}+\frac {1}{2}\right ) x \,{\mathrm e}^{\textit {\_Z}}+8 c_{1} x \,{\mathrm e}^{\textit {\_Z}}-2 \textit {\_Z} x \,{\mathrm e}^{\textit {\_Z}}+7 \,{\mathrm e}^{\textit {\_Z}} x +16\right )}}{2}-\frac {1}{2}\]