2.787   ODE No. 787

\[ y'(x)=\frac {x \left (2 x^4-2 x^2 y(x)+x^2-x-1\right )}{(x+1) \left (x^2-y(x)\right )} \]

Mathematica : cpu = 16.6869 (sec), leaf count = 488

DSolve[Derivative[1][y][x] == (x*(-1 - x + x^2 + 2*x^4 - 2*x^2*y[x]))/((1 + x)*(x^2 - y[x])),y[x],x]
 
\[\text {Solve}\left [\frac {\left (2-\frac {x \left (x^2-x-1\right ) \left (2 x^2-2 y(x)+3\right )}{\sqrt [3]{x^3 \left (x^2-x-1\right )^3} \left (x^2-y(x)\right )}\right ) \left (\frac {x \left (x^2-x-1\right ) \left (2 x^2-2 y(x)+3\right )}{\sqrt [3]{x^3 \left (x^2-x-1\right )^3} \left (x^2-y(x)\right )}+4\right ) \left (\left (1-\frac {x \left (x^2-x-1\right ) \left (2 x^2-2 y(x)+3\right )}{2 \sqrt [3]{x^3 \left (x^2-x-1\right )^3} \left (x^2-y(x)\right )}\right ) \log \left (\frac {2-\frac {x \left (x^2-x-1\right ) \left (2 x^2-2 y(x)+3\right )}{\sqrt [3]{x^3 \left (x^2-x-1\right )^3} \left (x^2-y(x)\right )}}{\sqrt [3]{2}}\right )+\left (\frac {x \left (x^2-x-1\right ) \left (2 x^2-2 y(x)+3\right )}{2 \sqrt [3]{x^3 \left (x^2-x-1\right )^3} \left (x^2-y(x)\right )}-1\right ) \log \left (\frac {\frac {x \left (x^2-x-1\right ) \left (2 x^2-2 y(x)+3\right )}{\sqrt [3]{x^3 \left (x^2-x-1\right )^3} \left (x^2-y(x)\right )}+4}{\sqrt [3]{2}}\right )-3\right )}{18 \sqrt [3]{2} \left (-\frac {\left (2 x^2-2 y(x)+3\right )^3}{8 \left (x^2-y(x)\right )^3}+\frac {3 x \left (x^2-x-1\right ) \left (2 x^2-2 y(x)+3\right )}{2 \sqrt [3]{x^3 \left (x^2-x-1\right )^3} \left (x^2-y(x)\right )}-2\right )}=\frac {4\ 2^{2/3} \left (x^3 \left (x^2-x-1\right )^3\right )^{2/3} \left (x \left (x^2-3 x+3\right )-3 \log (x+1)\right )}{27 x^2 \left (-x^2+x+1\right )^2}+c_1,y(x)\right ]\]

Maple : cpu = 0.418 (sec), leaf count = 191

dsolve(diff(y(x),x) = 1/(x^2-y(x))*x*(-x-1+x^2-2*x^2*y(x)+2*x^4)/(1+x),y(x))
 
\[y \left (x \right ) = \frac {4 x^{2} {\mathrm e}^{\operatorname {RootOf}\left (8 x^{3} {\mathrm e}^{\textit {\_Z}}-24 x^{2} {\mathrm e}^{\textit {\_Z}}-36 x^{3}+6 \ln \left (\frac {2 \,{\mathrm e}^{\textit {\_Z}}-9}{\left (1+x \right )^{4}}\right ) {\mathrm e}^{\textit {\_Z}}+18 c_{1} {\mathrm e}^{\textit {\_Z}}-6 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+24 x \,{\mathrm e}^{\textit {\_Z}}+108 x^{2}-27 \ln \left (\frac {2 \,{\mathrm e}^{\textit {\_Z}}-9}{\left (1+x \right )^{4}}\right )-81 c_{1} +27 \textit {\_Z} -108 x +27\right )}-18 x^{2}-9}{4 \,{\mathrm e}^{\operatorname {RootOf}\left (8 x^{3} {\mathrm e}^{\textit {\_Z}}-24 x^{2} {\mathrm e}^{\textit {\_Z}}-36 x^{3}+6 \ln \left (\frac {2 \,{\mathrm e}^{\textit {\_Z}}-9}{\left (1+x \right )^{4}}\right ) {\mathrm e}^{\textit {\_Z}}+18 c_{1} {\mathrm e}^{\textit {\_Z}}-6 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+24 x \,{\mathrm e}^{\textit {\_Z}}+108 x^{2}-27 \ln \left (\frac {2 \,{\mathrm e}^{\textit {\_Z}}-9}{\left (1+x \right )^{4}}\right )-81 c_{1} +27 \textit {\_Z} -108 x +27\right )}-18}\]