2.786 ODE No. 786
\[ y'(x)=\frac {a x y(x)^2 \cosh (x)+b x^3 \cosh (x)+y(x) \log (x)}{x \log (x)} \]
✓ Mathematica : cpu = 3.05911 (sec), leaf count = 61
DSolve[Derivative[1][y][x] == (b*x^3*Cosh[x] + Log[x]*y[x] + a*x*Cosh[x]*y[x]^2)/(x*Log[x]),y[x],x]
\[\left \{\left \{y(x)\to \frac {\sqrt {b} x \tan \left (\sqrt {a} \sqrt {b} \int _1^x\frac {\cosh (K[1]) K[1]}{\log (K[1])}dK[1]+\sqrt {a} \sqrt {b} c_1\right )}{\sqrt {a}}\right \}\right \}\]
✓ Maple : cpu = 0.082 (sec), leaf count = 33
dsolve(diff(y(x),x) = (y(x)*ln(x)+cosh(x)*x*a*y(x)^2+cosh(x)*x^3*b)/x/ln(x),y(x))
\[y \left (x \right ) = \frac {\tan \left (\sqrt {a b}\, \left (c_{1} +\int \frac {x \cosh \left (x \right )}{\ln \left (x \right )}d x \right )\right ) x \sqrt {a b}}{a}\]