2.777   ODE No. 777

\[ y'(x)=\frac {y(x) (y(x)+1)}{x \left (x y(x)^4-y(x)-1\right )} \]

Mathematica : cpu = 0.182612 (sec), leaf count = 39

DSolve[Derivative[1][y][x] == (y[x]*(1 + y[x]))/(x*(-1 - y[x] + x*y[x]^4)),y[x],x]
 
\[\text {Solve}\left [-\frac {1}{2} (y(x)+1)^2+2 (y(x)+1)-\frac {1}{x y(x)}-\log (y(x)+1)=c_1,y(x)\right ]\]

Maple : cpu = 0.119 (sec), leaf count = 51

dsolve(diff(y(x),x) = y(x)*(1+y(x))/x/(-y(x)-1+x*y(x)^4),y(x))
 
\[y \left (x \right ) = {\mathrm e}^{\operatorname {RootOf}\left (x \,{\mathrm e}^{3 \textit {\_Z}}-5 x \,{\mathrm e}^{2 \textit {\_Z}}+2 c_{1} x \,{\mathrm e}^{\textit {\_Z}}+2 \textit {\_Z} x \,{\mathrm e}^{\textit {\_Z}}+7 x \,{\mathrm e}^{\textit {\_Z}}-2 c_{1} x -2 \textit {\_Z} x -3 x +2\right )}-1\]