2.776   ODE No. 776

\[ y'(x)=\frac {y(x) \left (x^2 y(x) \log \left (\frac {x^2+1}{x}\right )-x \log \left (\frac {x^2+1}{x}\right )-\log \left (\frac {1}{x}\right )\right )}{x \log \left (\frac {1}{x}\right )} \]

Mathematica : cpu = 0.459163 (sec), leaf count = 133

DSolve[Derivative[1][y][x] == (y[x]*(-Log[x^(-1)] - x*Log[(1 + x^2)/x] + x^2*Log[(1 + x^2)/x]*y[x]))/(x*Log[x^(-1)]),y[x],x]
 
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {-\log \left (\frac {1}{K[1]}\right )-K[1] \log \left (\frac {K[1]^2+1}{K[1]}\right )}{K[1] \log \left (\frac {1}{K[1]}\right )}dK[1]\right )}{-\int _1^x\frac {\exp \left (\int _1^{K[2]}\frac {-\log \left (\frac {1}{K[1]}\right )-K[1] \log \left (\frac {K[1]^2+1}{K[1]}\right )}{K[1] \log \left (\frac {1}{K[1]}\right )}dK[1]\right ) K[2] \log \left (\frac {K[2]^2+1}{K[2]}\right )}{\log \left (\frac {1}{K[2]}\right )}dK[2]+c_1}\right \}\right \}\]

Maple : cpu = 0.539 (sec), leaf count = 96

dsolve(diff(y(x),x) = y(x)*(-ln(1/x)-ln((x^2+1)/x)*x+ln((x^2+1)/x)*x^2*y(x))/x/ln(1/x),y(x))
 
\[y \left (x \right ) = \frac {{\mathrm e}^{\int \frac {-\ln \left (\frac {x^{2}+1}{x}\right ) x -\ln \left (\frac {1}{x}\right )}{x \ln \left (\frac {1}{x}\right )}d x}}{\int -\frac {{\mathrm e}^{\int \frac {-\ln \left (\frac {x^{2}+1}{x}\right ) x -\ln \left (\frac {1}{x}\right )}{x \ln \left (\frac {1}{x}\right )}d x} \ln \left (\frac {x^{2}+1}{x}\right ) x}{\ln \left (\frac {1}{x}\right )}d x +c_{1}}\]