2.637   ODE No. 637

\[ y'(x)=\frac {e^{-x^2} x}{e^{x^2} y(x)+1} \]

Mathematica : cpu = 7.08779 (sec), leaf count = 62

DSolve[Derivative[1][y][x] == x/(E^x^2*(1 + E^x^2*y[x])),y[x],x]
 
\[\text {Solve}\left [-\frac {1}{4} \log \left (2 e^{2 x^2} y(x)^2+2 e^{x^2} y(x)+1\right )-\frac {1}{2} \tan ^{-1}\left (2 e^{x^2} y(x)+1\right )+\frac {1}{2} \log \left (e^{x^2}\right )=c_1,y(x)\right ]\]

Maple : cpu = 0.18 (sec), leaf count = 84

dsolve(diff(y(x),x) = 1/(y(x)*exp(x^2)+1)*exp(-x^2)*x,y(x))
 
\[y \left (x \right ) = -\frac {\tan \left (\operatorname {RootOf}\left (2 x^{2}-\ln \left (\frac {81 \tan \left (\textit {\_Z} \right )^{2}}{10}+\frac {81}{10}\right )+2 \ln \left (\frac {9 \tan \left (\textit {\_Z} \right )}{2}-\frac {9}{2}\right )+6 c_{1} -2 \textit {\_Z} \right )\right ) {\mathrm e}^{-x^{2}}}{\tan \left (\operatorname {RootOf}\left (2 x^{2}-\ln \left (\frac {81 \tan \left (\textit {\_Z} \right )^{2}}{10}+\frac {81}{10}\right )+2 \ln \left (\frac {9 \tan \left (\textit {\_Z} \right )}{2}-\frac {9}{2}\right )+6 c_{1} -2 \textit {\_Z} \right )\right )-1}\]