2.636 ODE No. 636
\[ y'(x)=y(x) \left (x^2-\log (y(x))\right ) \]
✓ Mathematica : cpu = 0.0829399 (sec), leaf count = 24
DSolve[Derivative[1][y][x] == (x^2 - Log[y[x]])*y[x],y[x],x]
\[\left \{\left \{y(x)\to e^{x^2-2 x-2 c_1 e^{-x}+2}\right \}\right \}\]
✓ Maple : cpu = 0.257 (sec), leaf count = 19
dsolve(diff(y(x),x) = (-ln(y(x))+x^2)*y(x),y(x))
\[y \left (x \right ) = {\mathrm e}^{{\mathrm e}^{-x} c_{1} +x^{2}-2 x +2}\]