2.610 ODE No. 610
\[ y'(x)=\frac {x^2 F\left (\frac {y(x)}{x}\right )+y(x)}{x} \]
✓ Mathematica : cpu = 0.072971 (sec), leaf count = 25
DSolve[Derivative[1][y][x] == (x^2*F[y[x]/x] + y[x])/x,y[x],x]
\[\text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {1}{F(K[1])}dK[1]=x+c_1,y(x)\right ]\]
✓ Maple : cpu = 0.014 (sec), leaf count = 20
dsolve(diff(y(x),x) = (y(x)+F(y(x)/x)*x^2)/x,y(x))
\[y \left (x \right ) = \operatorname {RootOf}\left (x -\left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} \right )+c_{1} \right ) x\]