2.609   ODE No. 609

\[ y'(x)=\frac {F\left (x^3 y(x)\right )-3 x^2 y(x)}{x^3} \]

Mathematica : cpu = 0.261041 (sec), leaf count = 117

DSolve[Derivative[1][y][x] == (F[x^3*y[x]] - 3*x^2*y[x])/x^3,y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}-\frac {x^3+F\left (x^3 K[2]\right ) \int _1^x\left (\frac {3 K[1]^5 K[2] F'\left (K[1]^3 K[2]\right )}{F\left (K[1]^3 K[2]\right )^2}-\frac {3 K[1]^2}{F\left (K[1]^3 K[2]\right )}\right )dK[1]}{F\left (x^3 K[2]\right )}dK[2]+\int _1^x\left (1-\frac {3 K[1]^2 y(x)}{F\left (K[1]^3 y(x)\right )}\right )dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.174 (sec), leaf count = 22

dsolve(diff(y(x),x) = (-3*x^2*y(x)+F(x^3*y(x)))/x^3,y(x))
 
\[y \left (x \right ) = \frac {\operatorname {RootOf}\left (x -\left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} \right )+c_{1} \right )}{x^{3}}\]