2.584   ODE No. 584

\[ y'(x)=\frac {2 a}{2 a F\left (y(x)^2-4 a x\right )+y(x)} \]

Mathematica : cpu = 0.236146 (sec), leaf count = 115

DSolve[Derivative[1][y][x] == (2*a)/(2*a*F[-4*a*x + y[x]^2] + y[x]),y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {K[2]}{4 a^2 F\left (K[2]^2-4 a x\right )}-\frac {2 a \int _1^x\frac {K[2] F'\left (K[2]^2-4 a K[1]\right )}{a F\left (K[2]^2-4 a K[1]\right )^2}dK[1]-1}{2 a}\right )dK[2]+\int _1^x-\frac {1}{2 a F\left (y(x)^2-4 a K[1]\right )}dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.082 (sec), leaf count = 35

dsolve(diff(y(x),x) = 2*a/(y(x)+2*F(y(x)^2-4*a*x)*a),y(x))
 
\[\frac {y \left (x \right )}{2 a}+\frac {\int _{}^{y \left (x \right )^{2}-4 a x}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a}}{8 a^{2}}-c_{1} = 0\]