2.583 ODE No. 583
\[ y'(x)=-\frac {1}{2} x \left (a x^2-2 F\left (\frac {a x^4}{8}+y(x)\right )\right ) \]
✓ Mathematica : cpu = 0.259057 (sec), leaf count = 126
DSolve[Derivative[1][y][x] == -1/2*(x*(a*x^2 - 2*F[(a*x^4)/8 + y[x]])),y[x],x]
\[\text {Solve}\left [\int _1^{y(x)}-\frac {F\left (\frac {a x^4}{8}+K[2]\right ) \int _1^x\frac {a K[1]^3 F'\left (\frac {1}{8} a K[1]^4+K[2]\right )}{2 F\left (\frac {1}{8} a K[1]^4+K[2]\right )^2}dK[1]+1}{F\left (\frac {a x^4}{8}+K[2]\right )}dK[2]+\int _1^x\left (K[1]-\frac {a K[1]^3}{2 F\left (\frac {1}{8} a K[1]^4+y(x)\right )}\right )dK[1]=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.134 (sec), leaf count = 31
dsolve(diff(y(x),x) = -1/2*(a*x^2-2*F(y(x)+1/8*a*x^4))*x,y(x))
\[y \left (x \right ) = -\frac {a \,x^{4}}{8}+\operatorname {RootOf}\left (-x^{2}+2 \left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} \right )+2 c_{1} \right )\]